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Distributed Discrete Hashing by Equivalent
Continuous Formulation

Shengnan Wang , Chunguang Li , Senior Member, IEEE, and Hui-Liang Shen

Abstract—Hashing based approximate nearest neighbor search
has attracted considerable attention in various fields. Most of the
existing hashing methods are centralized, which cannot be used for
many large-scale applications with the data stored or collected in
a distributed manner. In this article, we consider the distributed
hashing problem. The main difficulty of hashing is brought by
its inherent binary constraints, which makes the problem gener-
ally NP-hard. Most of the existing distributed hashing methods
chose to relax the problem by dropping the binary constraints.
However, such a manner will bring additional quantization error,
which makes the binary codes less effective. In this paper, we
propose a novel distributed discrete hashing method, which learns
effective hash codes without using any relaxations. Specifically,
we give a method to transform the discrete hashing problem into
an equivalent distributed continuous optimization problem. After
transformation, we devise a distributed discrete hashing (dDH)
algorithm based on the idea of DC programming to solve the
problem. To obtain more efficient hash codes, we further add bits
balance and uncorrelation constraints to the hashing problem,
and we also propose a distributed constrained discrete hashing
algorithm (dCDH) to solve this problem. Extensive experiments
are provided to show the superiority of the proposed methods.

Index Terms—Learning to hash, distributed hashing, discrete
hashing, large-scale image retrieval, DC programming.

I. INTRODUCTION

R ECENTLY, HASHING based approximate nearest neigh-
bor search has a wide range of applications in image

retrieval [1], [2], computer vision [3], [4], and machine learn-
ing [5], [6], etc. By encoding high-dimensional data points into
compact binary codes, hashing can accomplish nearest neighbor
search with a constant time complexity. An effective hashing
method should be similarity preserving [11], namely, it should
map similar data points to adjacent binary hash codes.
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Generally, the hashing methods can be mainly divided into
data-independent hashing [6], [16], [17] and data-dependent
hashing [7], [11]–[13]. Locality sensitive hashing (LSH) [16],
[23] should be one of the most popular data-independent hashing
methods. LSH generates hash functions by random projections
and it can map similar samples to similar codes with a high
probability. However, it usually requires long bits to achieve
good precision. Recently, more works are related to the data-
dependent hashing, which learns binary codes and hash func-
tions based on data. Due to this, the data-dependent hashing
methods are also called the learning to hash (LH) methods [24].
The LH methods can effectively and efficiently map massive
data points to very short compact binary codes. Representative
LH methods include the unsupervised hashing methods: spectral
hashing [11], ITQ [8], adaptive binary quantization hashing [9],
structure sensitive hashing [15], discrete graph hashing [18]; and
supervised hashing methods: minimal loss hashing (MLH) [19],
supervised discrete hashing (SDH) [13], supervised hashing
with kernels (KSH) [12], latent factor hashing (LFH) [32],
column sampling based discrete supervised hashing [29], and so
on. The main difference between unsupervised and supervised
hashing is whether the label information of data is available for
learning binary codes and hash functions.

More recently, some deep hashing methods [20]–[22] were
proposed, which use deep networks to learn binary hash codes
and achieved promising performance. However, deep hashing
is much more time-consuming in both training and testing
stages, compared with the non-deep hashing, which is inefficient
in practice and may restrict its application in fast similarity
search [9], [14], [30]. One of the future directions of deep hash-
ing is to design a proper hashing technique to accelerate deep
neural network training and save memory space. In this work,
we mainly consider the non-deep hashing for fast approximate
nearest neighbor search.

Most of the existing LH methods are centralized, so they can
only be implemented in a single machine. However, in many
real problems, such as the applications of search engine [33],
mobile surveillance [34], and sensor networks [35], the data are
often distributed across different locations. Besides, in practice,
we usually need to deal with some big-data problems, such as
large-scale image processing [36], [37] and large-scale informa-
tion retrieval [38], which are far beyond the capacity of a single
machine (computer). In this situation, we usually partition the
data and store them in multiple machines. As a consequence, it is
of great importance to develop distributed hashing algorithms to
deal with these problems. Some pioneering work has been done,
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such as the distributed ITQ [39], Hashing for distributed data
(DisH) [26], and distributed graph hashing [28]. The inherent
binary constraints make the hashing problem NP-hard, and for
tractability, the above distributed hashing methods chose to
relax the problem by eliminating the binary constraints. Such a
manner greatly simplifies the problem. However, it also causes
large quantization error and makes the learned binary codes less
effective [13]. To obtain high-quality binary codes, some discrete
hashing methods [18], [29], [30] were proposed, which solve
the hashing problem without using any relaxations. However,
these methods are all centralized, which cannot be used for
distributed hashing. Directly extending the existing centralized
discrete hashing methods into the distributed version is difficult,
for the convergence and consensus cannot be guaranteed. The
main reason is that in the area of distributed optimization, all the
algorithms and theory are based on the condition of continuity.
Distributed discrete optimization is an open question so far.

In this paper, we consider the distributed hashing problem.
We cast a distributed hashing model, in which the objective
function is decomposed into several local objective functions. To
guarantee the effectiveness of the binary codes, we aim to solve
the distributed hashing problem without using any relaxations.
The main contributions of this paper are as follows:

1) We propose a distributed discrete hashing method to solve
the distributed hashing problem. This is the first unsu-
pervised distributed discrete hashing method, which does
not use any relaxations so that no quantization errors will
be introduced. To address the difficulty brought by the
binary constraints and solve the problem in a distributed
manner, we propose a method to transform the discrete
hashing problem into an equivalent distributed continuous
optimization problem.

2) The bits balance and uncorrelation constraints can make
the hash codes efficient, however, they also make the
problem difficult to be solved in a distributed manner.
The existing distributed hashing methods use the relax-
ation manner to deal with this problem. In this paper,
we propose a method to address the difficulty brought
by the two constraints and reformulate the constrained
hashing problem into the form of a tractable distributed
optimization problem, without using any relaxations.

3) We propose distributed algorithms based on the idea of
DC programming to solve the transformed distributed
continuous optimization problems.

It is worth mentioning that in this paper we mainly consider
the distributed unsupervised discrete hashing. However, the
proposed distributed discrete hashing can be easily extended to
the supervised scenario by replacing the unsupervised hashing
objective with a supervised hashing objective. We give an exam-
ple of distributed supervised discrete hashing in the Appendix.

The rest of this paper is organized as follows. In Section II,
we introduce some preliminary knowledges. In Section III,
we cast a distributed hashing model and propose a distributed
discrete hashing algorithm. In Section IV, we further give the
method to address the distributed hashing problem with bits
balance and uncorrelation constraints. In Section V, we give
the method for obtaining hash functions in a distributed manner.

The communication and computational complexity analyses are
given in Section VI and experiments on large-scale benchmark
datasets are provided in Section VII. Finally, we draw the con-
clusion in Section VIII. An example of distributed supervised
discrete hashing is presented in the Appendix A.

II. PRELIMINARIES

A. Notations

In this paper, we use a lowercase letter to denote a column
vector and a capital letter to denote a matrix. For a vector x (or
a matrix X), we use xT (or XT ) to denote its transpose. For a
vector x, we use ||x|| to denote the l2 norm of x. For a matrixX ,
we use ||X|| to denote the Frobenius norm ofX . For a closed set
Ω and a vector x, we use PΩ[x] to denote the projection of x into
Ω. We use∇f to denote the gradient (or subgradient) of a convex
function f(·), and we use sign(·) to denote the element-wise sign
function. We use tr(X) to denote the trace of a matrix X . For
each agent l, we use Nl to denote the set of is neighbors, and we
use |Nl| to denote the degree of agent l.

B. Distributed Graph Hashing

Let X = [x1, x2, . . . , xn] ∈ Rd×n denote the dataset of n
samples, where d is the dimensionality of the data. Graph
hashing maps the data points into binary codes by solving the
following hashing problem

min
B

tr(B(S −W )BT )

s.t. B ∈ {−1, 1}r×n, (1)

where W = [Wi,j ]n×n is called the graph matrix with Wi,j =
exp(−||xi − xj ||2/ε), and S is a diagonal n× n matrix with
Si,i =

∑
j Wi,j . The matrix B denotes the binary codes of

the dataset X . The parameter ε > 0 defines the distance in
Rd which corresponds to similar items. Note that the time
complexity to compute W is O(dn2), which is unacceptable in
large-scale applications. In practice, we usually use the method
in [7] to construct the graph matrix by W = UUT , where
U ∈ Rn×p(p� n) is a truncated similarity matrix which is
highly sparse. The time complexity to constructW by U is only
O(pdn).

In [28], based on graph hashing, we proposed a distributed
hashing model for learning hash functions in a distributed
manner. In the distributed scenario, the data are stored across
m agents (machines) over a connected network. Let X l =
[xl1, x

l
2, . . . , x

l
nl
] ∈ Rd×nl denote the local dataset of agent l.

Then the whole data X is a concatenation of local datasets, i.e.,
X = [X1, X2, . . . , Xm]. As stated in [28], in the distributed
scenario, it is difficult to directly construct the graph matrix
W = [Wi,j ]n×n as shown in (1) for modeling the distributed
hashing problem, due to unacceptable communication and com-
putation cost. For tractability, in [28], we constructed an anchor
point based graph matrix W̃ ∈ Rn×q with

W̃i,j = exp(−||xi − aj ||2/ε), (2)
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where a1, . . . , aq are common anchor points. In [28], we have
given the method to obtain the anchor points satisfying the
distributed setting. The graph matrix W̃ stores the similarity
between the data points and anchor points. It can also be repre-
sented as a concatenation of local graph matrices, i.e., W̃ =
[W̃ 1; W̃ 2; · · · ; W̃m], where W̃ l ∈ Rnl×q is the local graph
matrix. The distributed graph hashing in [28] is formulated as
follows

max
B,Z

m∑

l=1

tr(BlW̃ lZT ),

s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q, (3)

where Bl denotes the hash code matrix of the data X l and Z
denotes the hash code matrix of the anchor points. In [28], we
gave two distributed algorithms to solve the distributed graph
hashing problem.

However, generally the hashing problem is a nonconvex
mixed-integer optimization problem, due to the discrete con-
straints, which is NP-hard. The algorithms proposed in [28]
solve the distributed graph hashing problem by relaxation, which
will make the learned hash codes of low quality. In fact, most
of the existing distributed hashing methods adopted the re-
laxation method to address the hashing problem. In addition,
the distributed graph hashing model (3) does not fully utilize
the available similarity information, so the performance of the
distributed graph hashing can be further improved.

C. DC Programming and DC Algorithm

Here, we give a brief introduction of DC (difference of convex
functions) programming and DC algorithm (DCA) [44], [45],
which may be used in the following paper. DC programming
approach is widely used for dealing with smooth or nonsmooth
nonconvex continuous optimization problem. The main idea
of DC programming is to represent the nonconvex objective
function f(x) by the difference of convex functions, namely,

min f(x) = g(x)− h(x), x ∈ C, (4)

where both g(x) and h(x) are convex functions, and C ⊆ Rd is
the domain.

DCA is designed for solving the DC programming (4). The
existing experiment results showed that DCA quite often gives
a global optimal solution, and DCA is proved to be more robust
and more efficient than other related standard methods, espe-
cially when the problem is large-scale [43]–[45]. DCA solves
the DC programming (4) by using the following update rule

{
y := ∇h(x),
x := argmin{g(x)− 〈x, y〉;x ∈ C}, (5)

where y is called the dual variable, and ∇h(x) denotes the
subgradient of h(x). If h(x) is differentiable, ∇h(x) is just the
gradient of h(x).

III. DISTRIBUTED DISCRETE HASHING

A. Distributed Discrete Hashing Model

In this section, we aim to fully utilize the similarity informa-
tion among the distributed data and give an effective distributed
discrete hashing method to generate high-quality hashing codes.
The scenario is the same as that shown in Section II-B. The
data are distributed across m agents over a connected network,
and each agent l owns its local dataset X l. First, we will also
generate the anchor points a1, . . . , aq , which are known by all
the agents. Utilizing the anchor points and the local data X l =
[xl1, x

l
2, . . . , x

l
nl
], each agent l can construct a local graph matrix

W l ∈ R(nl+q)×(nl+q). Here, we will use the method in [7]
mentioned above to finish this task, namelyW l = U l(U l)T with
U l ∈ R(nl+q)×p(p� nl).

Now we give the distributed discrete hashing model, as fol-
lows

min
B,Z

m∑

l=1

tr([Bl, Z](Sl −W l)[Bl, Z]T ),

s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q, (6)

where Bl stores the hash codes of the local data X l, and
Z stores the hash codes of the anchor points. For each l ∈
{1, . . . ,m}, the matrix Sl is a diagonal (nl + q)× (nl + q)
matrix with Sl

i,i =
∑

j W
l
i,j . In (6), the local objective function

Ll(B
l, Z) = tr([Bl, Z](Sl −W l)[Bl, Z]T ) is known by agent

l only. Compared with the distributed graph hashing model
(3), in (6), more similarity information is utilized, not only the
similarity information between the data points and the anchor
points, but also the similarity information among the local data
points from the same agent, as well as the similarity information
among the anchor points.

More importantly, as stated before, the existing distributed
hashing algorithms solve the hashing problem by using relax-
ations, which will cause large quantization error and make the
hash code less effective. To obtain high-quality hash codes, in
the following, we will propose a distributed hashing method to
solve the hashing problem (6) without using any relaxations.

B. Equivalent Continuous Optimization Transformation

Problem (6) is a distributed discrete optimization problem.
Directly optimizing such a problem is very difficult, especially
in a distributed manner, due to the lack of distributed algorithms
for discrete optimization. In the literature, most of the existing
distributed optimization algorithms are related to continuous
optimization.

In [47], we gave a method to transform the centralized hashing
problem into an equivalent continuous optimization problem,
and we showed that the hashing problem can be well solved after
transformation. In the following, we aim to transform the dis-
tributed hashing problem (6) into an equivalent distributed con-
tinuous optimization problem, so that we can devise distributed
continuous optimization algorithms to solve the problem. Before
giving the transformation method, we need to introduce the
following lemma.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 21,2020 at 02:41:43 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DISTRIBUTED DISCRETE HASHING BY EQUIVALENT CONTINUOUS FORMULATION 199

Lemma 1 ([42]): Let f be a Lipschitz continuous function
on X with constant L. Let ϕ be a nonnegative function defined
on X and S := {x ∈ X : ϕ(x) = 0}. If d(x,S) ≤ ϕ(x) for all
x ∈ X , then the two problems

inf{f(x) : x ∈ S} and inf{f(x) + γϕ(x) : x ∈ X}
are equivalent with γ > L. In other words, the two problems
have the same optimal solutions and the same optimal value.
Here,

d(x,S) := inf
z∈S

||x− z||,

which is the distance from a point x to the set S .
Lemma 1 implies that by constructing suitable penalty func-

tion ϕ(·), the domain of the optimization problem can be en-
larged while the optimal solution of the problem is unchanged.
The key point is to find or construct such a penalty functionϕ(·).
In [47], we have constructed an effective penalty function for the
hashing problem. We showed that a general hashing problem

min
B

L(B)

s.t. B ∈ {−1, 1}r×n (7)

is equivalent to the following continuous optimization problem

min
B

L(B) + γϕ(B)

s.t. B ∈ [−1, 1]r×n, (8)

with ϕ(B) = rn− tr(BBT ) and γ > L, where L is the Lips-
chitz constant of L(B) on [−1, 1]r×n. The penalty term γϕ(B)
forces the optimal solution of problem (8) to be in {−1, 1}r×n.
The specific process and detailed proof can be seen in [47].

Therefore, according to [47], we can show that problem (6)
is equivalent to the following continuous optimization problem

min
B,Z

m∑

l=1

tr([Bl, Z](Sl −W l)[Bl, Z]T ) + γϕ([B,Z]),

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q, (9)

where ϕ([B,Z]) = r(n+ q)− tr([B,Z][B,Z]T ) and γ > L′.
Here, L′ is the Lipschitz constant of the objective function in (6)
with respect to the whole variable [B,Z] on B ∈ [−1, 1]r×nl

and Z ∈ [−1, 1]r×q . However, though the above problem is a
continuous optimization problem, it is not the standard form
of distributed optimization. The objective function is not repre-
sented as the sum of local objective functions. So it is difficult to
apply the distributed optimization algorithms to such a problem.
In addition, it is not easy to know the Lipschitz constant of the
objective function with respect to the whole variable [B,Z] in
the distributed setting. Hence, more reasonable transformation
is needed.

In the following, we transform the problem (6) into an equiv-
alent distributed continuous optimization problem step by step,
satisfying the distributed setting. Note that each local variableBl

only exists in agent l, so each agent l can independently construct
a local penalty function ϕl(B

l) = rnl − tr(Bl(Bl)T ). Then
according to [47], problem (6) can be first transformed to the

following problem

min
B,Z

m∑

l=1

[
tr([Bl, Z](Sl −W l)[Bl, Z]T ) + γlϕl(B

l)
]
,

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ {−1, 1}r×q, (10)

with γl > Ll, where Ll is the Lipschitz constant of the local
objective function Ll(B

l, Z) with respect to the local variable
Bl, which can be easily obtained by agent l. Next, we address
the discrete global variable Z. Similarly, by defining ϕ(Z) =
rq − tr(ZZT ), the problem (10) can be further transformed to

min
B,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T )

+ γlϕl(B
l)] + γzϕ(Z),

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q, (11)

with γz > Lz , where Lz denotes the Lipschitz constant of the
whole objective function of (10) with respect to Z. So the only
thing is to find a constant larger than Lz . Note that each agent
l can easily obtain the Lipschitz constant of the local objective
function Ll(B

l, Z) with respect to Z, denoted by Ll
z . Then a

simple way is that each agent l broadcasts Ll
z , and all the agents

set γz = mmax{Ll
z}.

We further represent the problem (11) as follows

min
B,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T ) + γlϕl(B
l)

+
1

m
γzϕ(Z)],

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q, (12)

and we use fl(B
l, Z) = tr([Bl, Z](Sl −W l)[Bl, Z]T ) +

γlϕl(B
l) + 1

mγzϕ(Z) to denote the new local objective func-
tion of agent l. Therefore, we have successfully transformed
the distributed hashing problem into an equivalent distributed
continuous optimization problem.

Remark 1: In Lemma 1, the condition γ > L is only a suffi-
cient condition but not necessary. In the above, we have given the
method to obtain the parameter γ that theoretically guarantees
the equivalence of the transformed problem and the original
problem. In practice, usually, a much smallerγ is enough to guar-
antee the equivalence, especially for the large-scale problem in
which the Lipschitz constant L is usually very large. In [47], we
have shown that in the large-scale hashing problem, a moderateγ
is enough to guarantee that the transformed continuous hashing
problem has the same optimal solution as the original discrete
hashing problem. In the experiment section of this paper, we
will also show similar results.

C. Distributed Learning Algorithm

The transformed problem is still a nonconvex optimization
problem, since the penalty functions {ϕl(B

l)} and ϕz(Z) are
all concave functions. However, the continuous property makes
it possible to solve such a problem in a distributed manner. We
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aim to adopt the idea of DC programming and DCA to solve this
problem. First of all, we should rewrite the problem as the form
of DC programming. Though the problem (12) can be rewritten
as many DC programmings, since each agent l only knows
its local objective function in (12), we should ensure that the
whole process satisfies the distributed setting. To finish this task,
we first let each agent decompose its local objective function
fl(B

l, Z) as the difference of convex functions, as follows,

fl(B
l, Z) = gl(B

l, Z)− hl(B
l, Z),

with

gl(B
l, Z) = tr([Bl, Z](Sl −W l)[Bl, Z]T )

and

hl(B
l, Z) = −γlϕl(B

l)− 1

m
γzϕ(Z).

It can be verified that both gl(Bl, Z) and hl(Bl, Z) are convex.
Then the whole problem (12) can be represented as the following
DC programming

min
B,Z

G(B,Z)−H(B,Z),

s.t. B ∈ [−1, 1]r×n, Z ∈ [−1, 1]r×q, (13)

with G(B,Z) =
∑m

l=1 gl(B
l, Z) and H(B,Z) =

∑m
l=1 hl

(Bl, Z). For simplicity, we use E to denote the whole variable
of the problem, namelyE = [B,Z]. Then problem (13) can also
be represented as

min
B,Z

G(E)−H(E),

s.t. E ∈ [−1, 1]r×(n+q). (14)

DCA solves such a DC programming (14) by repeating the
following two steps

A = ∇H(E), (15)

E = argminE∈[−1,1]r×(n+q){G(E)− tr(ETA)}, (16)

where ∇H(E) = [∂H∂B ,
∂H
∂Z ], and ∂H

∂B = [ ∂H∂B1 , . . . ,
∂H
∂Bm ]. Let

Al =
∂H

∂Bl
=
∂hl
∂Bl

= 2γlB
l

for all l ∈ {1, . . . ,m}, and let

Az =
1

m

∂H

∂Z
=

2γz
m
Z.

One can see that Al can be independently computed by agent l,
and Az can be computed by all the agents. Note that

tr(ETA) =

m∑

l=1

tr((Bl)TAl) +mtr(ZTAz)

=

m∑

l=1

[tr((Bl)TAl) + tr(ZTAz)].

Then problem (16) can be represented as the following dis-
tributed convex optimization problem

min
B,Z

m∑

l=1

[gl(B
l, Z)− tr((Bl)TAl)− tr(ZTAz)]

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q,
(17)

Problem (17) is a special distributed optimization problem, in
which{Bl} are local variables andZ is the global variable. Since
the problem is a convex optimization problem, we can use the
efficient projected gradient descent method to obtain the optimal
solution. Let J(B,Z) denote the whole objective function of
problem (17), and let Jl(Bl, Z) = gl(B

l, Z)− tr((Bl)TAl)−
tr(ZTAz), which is the local objective function of agent l. Note
that the gradient of the whole objective function with respect to
the local variable Bl can be computed as

∂J

∂Bl
=

∂Jl
∂Bl

,

which can be independently obtained by agent l. While the
gradient of the whole objective function with respect to the
global variable Z is

∂J

∂Z
=

m∑

l=1

∂Jl
∂Z

,

which is difficult to obtain since each agent l only knows Jl. So
we aim to use the distributed projected gradient descent [48],
[50] method to deal with the global variable Z. Let Zl denote
the local estimation of the global variable Z at agent l. To solve
the problem, at each iteration, each agent l first computes the
gradient of Jl(Bl, Zl) with respect to the variable [Bl, Zl],
which is

∇Jl(Bl, Zl) = 2[Bl, Zl](Sl −W l)− [Al, Al
z],

where Al
z = 2γz

m Zl. The update of the local variable Bl can be
directly finished by agent l using the projected gradient descent
step without any communication with other agents. While the
update of Zl includes two steps. First, each agent l obtains
an intermediate estimate Rl using the local projected gradient
descent. Then each agent l shares its intermediate estimate Rl

with its neighbors and updates Zl as the weighted average of all
the obtained intermediate estimates (including Rl). The whole
process is shown in Algorithm 1.

Here, Dl := [−1, 1]r×(nl+q), which are the projection sets,
wlj ≥ 0 is the weight agent l assigns to the information received
from agent j, and wlj > 0 if and only if j = l or j ∈ Nl.
The weight parameters {wlj} should satisfy that

∑m
j=1 wlj =

1, ∀l ∈ {1, . . . ,m}, and
∑m

l=1 wlj = 1, ∀j ∈ {1, . . . ,m}. The
method for generating such weight parameters satisfying all the
above requirements can be seen in [51]. According to [25], [48],
[50], repeating the projected gradient descent step and communi-
cation step, the local estimates {Zl}will achieve consensus, and
the variables will converge to the optimal solution of problem
(17). The convergence proof of the projected gradient descent
method and distributed projected gradient descent method can
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Algorithm 1: Distributed Projected Gradient Descent
(dPGD) Algorithm for Subproblem (17).

Input: Bl ∈ Rr×nl , Zl ∈ Rr×q, Al ∈ Rr×nl , and
Al

z ∈ Rr×q, for all l ∈ {1, . . . ,m}.
Repeat

Computing gradient step: each agent l compute the
gradient

∇Jl(Bl, Zl) = 2[Bl, Zl](Sl −W l)− [Al, Al
z];

Projected gradient descent step: Each agent l computes

[Bl, Rl] = PDl
([Bl, Zl]− α∇Jl(Bl, Zl));

Communication step: Each agent l shares Rl with all the
neighbors j ∈ Nl and updates Zl by

Zl =

m∑

j=1

wljR
j ;

Until convergence condition holds.
Output: Bl ∈ Rr×nl , Zl ∈ Rr×q, for all l ∈ {1, . . . ,m}.

Algorithm 2: dDH.

Input the parameters {γl}, γz and anchor points {ai}qi=1.
Each agent l constructs the W l and Sl using the local data
points and anchor points. Initialize the variables Bl, Zl by
the sign of random Gaussian matrices.
Loop until convergence or reach T times

Each agent l computes
Al = 2γlB

l, Al
z = 2γz

m Zl;
Each agent l updates [Bl, Zl] by

{Bl, Zl} = dPGD({Bl}, {Zl}, {Al}, {Al
z}).

Output The binary codes {Bl}.

be seen in [25], [48]. To avoid repetition, we do not give detailed
proof here.

We summarize the whole process of the proposed distributed
discrete hashing (dDH) algorithm for solving the hashing prob-
lem (12) in Algorithm 2.

IV. DISTRIBUTED DISCRETE HASHING WITH BITS BALANCE

AND UNCORRELATION CONSTRAINTS

A. Problem Formulation

The bits balance and uncorrelation constraints were widely
used in the existing centralized hashing methods to improve the
efficiency of hash codes. However, the two constraints will make
the hashing problem more complex and difficult to be solved in a
distributed manner. So the existing distributed hashing methods
either did not consider the two constraints or relaxed the two
constraints during the optimization stage, which makes the hash
codes less efficient as they are expected.

In the following, we add the bits balance and uncorrelation
constraints in the proposed distributed hashing model (6), and

we still aim to solve the problem without using any relaxations
to ensure the effectiveness and efficiency of hash codes. With the
bits balance and uncorrelation constraints, the problem becomes

min
B,Z

m∑

l=1

tr([Bl, Z](Sl −W l)[Bl, Z]T ),

s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q

B1 = 0,

BBT = nI. (18)

Note that the two constraints are related to the whole binary
codes. Directly optimizing with the two constraints needs to
assemble all the binary codes together [30], which leads to
prohibitive communication cost. To optimize the whole problem
in a distributed manner, we introduce the auxiliary variables
{Dl}, {M l}, with Dl = Bl1nl

and M l = Bl(Bl)T , for all
l ∈ {1, . . . ,m}. Since

B1n = [B1, B2, . . . , Bm]1n =
m∑

l=1

Bl1nl
,

and

BBT = [B1, B2, . . . , Bm][B1, B2, . . . , Bm]T =

m∑

l=1

Bl(Bl)T ,

the above problem can be rewritten as

min
B,Z

m∑

l=1

tr([Bl, Z](Sl −W l)[Bl, Z]T ),

s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q

Dl = Bl1nl
, ∀l ∈ {1, . . . ,m},

M l = Bl(Bl)T , ∀l ∈ {1, . . . ,m},
m∑

l=1

Dl = 0,

m∑

l=1

M l = nIr. (19)

Like [30], by introducing the penalty terms, we can further
rewrite the problem as

min
Bl,Z,Dl,M l

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T )

+ μ||Bl1nl
−Dl||2 + η||Bl(Bl)T −M l||2]

s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q,

m∑

l=1

Dl = 0,

m∑

l=1

M l = nIr. (20)

One can see that problem (19) is equivalent to problem (20) with
sufficiently large μ, η. As shown in [30], [47], the bits balance
and uncorrelation constraints in the hashing problem are only
used to formulate the desired properties, which are not treated
as hard constraints that cannot be violated, so in real applications,
we usually set moderate μ, η.
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B. Distributed Learning Algorithm

Problem (20) involves a lot of variables and it is difficult to
directly optimize the problem with all the variable. For tractabil-
ity, such a problem is usually solved by alternating optimiza-
tion [30], [40], namely sequentially optimizing the problem with
respect to one set of the variables while keeping the others fixed.
In the following, we give the specific optimization procedure
step by step.

Optimizing Problem (20) w.r.t. B, Z: First, we optimize the
problem (20) with respect to the hash code variablesB,Z while
keeping the variables {Dl}, {M l} fixed, which is shown as
follows

min
Bl,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T ) + μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T −M l||2]
s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q, (21)

Also, we aim to transform this problem into an equivalent
continuous optimization problem and then devise distributed
optimization algorithm based on DC programming to solve this
problem. Before giving the optimization method, we want to
make an uninfluential modification to problem (21), which will
bring much convenience for the subsequent optimization. The
matrix M l is not guaranteed to be positive semidefinite. Let νl
be the smallest eigenvalue of M l. Define

M̂ l =

{
M l − νIr, if νl < 0,
M l, if νl ≥ 0.

(22)

Then M̂ l is positive semidefinite. It can be verified that

||Bl(Bl)T − M̂ l||2 = ||Bl(Bl)T −M l||2 + const,

for all Bl ∈ {−1, 1}r×nl . Thus, optimizing problem (21) is
equivalent to optimizing

min
Bl,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T ) + μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T − M̂ l||2]
s.t. Bl ∈ {−1, 1}r×nl , Z ∈ {−1, 1}r×q. (23)

According to the transformation method shown in Section III-B,
we can transform the above problem into the following equiva-
lent continuous optimization problem

min
B,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T ) + μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T − M̂ l||2 + γlϕl(B
l) +

1

m
γzϕ(Z)],

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q. (24)

Then we adopt the method of DC programming to find an
optimal solution of problem (24), which is also an optimal
solution of (23). Note that

||Bl(Bl)T − M̂ l||2 = ||Bl(Bl)T ||2 − 2tr((M̂ l)TBl(Bl)T )

+ ||M̂ l||2,

where ||Bl(Bl)T ||2, 2tr((M̂ l)TBl(Bl)T ) are convex and
||M l||2 is a constant. Therefore, we can represent the problem
(24) as the following DC programming

min
B,Z

G1(E)−H1(E)

s.t. E ∈ [−1, 1]r×(n+q), (25)

where E = [B,Z] and

G1(E) =

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T )

+ μ||Bl1nl
−Dl||2 + η||Bl(Bl)T ||2],

H1(E) =

m∑

l=1

[
2ηtr((M̂ l)TBl(Bl)T )

−γϕl(B
l)− 1

m
γzϕ(Z)

]

.

It can be verified thatG1(E),H1(E) are both convex and such a
decomposition satisfies the distributed setting. As stated before,
DCA solves problem (25) by repeating

A = ∇H1(E), (26)

E = argminE∈[−1,1]r×(n+q){G1(E)− tr(ETA)}, (27)

where ∇H1(E) = [∂H1

∂B , ∂H1

∂Z ], and ∂H1

∂B = [∂H1

∂B1 , . . . ,
∂H1

∂Bm ].
Similar to Section III-C, for simplicity, we also set

Al =
∂H1

∂Bl
= 4η(M̂ l)TBl + 2γlB

l

for all l ∈ {1, . . . ,m}, and set

Az =
1

m

∂H1

∂Z
=

2γz
m
Z.

Then problem (27) can be represented as the following dis-
tributed convex optimization problem

min
B,Z

m∑

l=1

[tr([Bl, Z](Sl −W l)[Bl, Z]T ) + μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T ||2 − tr((Bl)TAl)− tr(ZTAz)]

s.t. Bl ∈ [−1, 1]r×nl , Z ∈ [−1, 1]r×q, (28)

which can also be solved using the distributed projected gradient
descent algorithm. Let

Jl(B
l, Zl) = tr([Bl, Z](Sl −W l)[Bl, Z]T )

+ μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T ||2 − tr((Bl)TAl)− tr(ZTAz)

The gradient of Jl(Bl, Zl) with respect to the variable [Bl, Zl]
is

∇Jl(Bl, Zl) = 2[Bl, Zl](Sl −W l)− [Al
1, A

l
z], (29)

with

Al
1 = −2μ(Bl1nl

−Dl)1T
nl

− 4ηBl(Bl)TBl +Al.
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Algorithm 3: Distributed Projected Gradient Descent
(dPGD1) Algorithm for Subproblem (28).

Input: Bl ∈ Rr×nl , Zl ∈ Rr×q, Al ∈ Rr×nl , Al
z ∈ Rr×q,

Dl ∈ Rr, and M l ∈ Rr×r, for all l ∈ {1, . . . ,m}.
Repeat

Computing gradient step: each agent l compute the
gradient ∇Jl(Bl, Zl) by equation (29);

Projected gradient descent step: Each agent l computes

[Bl, Rl] = PDl
([Bl, Zl]− α∇Jl(Bl, Zl));

Communication step: Each agent l shares Rl with all the
neighbors j ∈ Nl and updates Zl by

Zl =
m∑

j=1

wljR
j ;

Until convergence condition holds.
Output: Bl ∈ Rr×nl , Zl ∈ Rr×q, for all l ∈ {1, . . . ,m}.

We show the algorithm for solving (28) in Algorithm 3.
Optimizing Problem (20) w.r.t. D, M : We give the detailed

derivations of this part in the Appendix.
Algorithm Flow: For clarity, we show the whole algorithm

flow for solving the distributed hashing problem (20) in Algo-
rithm 4.

The updates in each step is implemented in parallel on all the
agents, and all the updates are finished by agent l independently
or with moderate communication with its neighbors, which
satisfies the distributed setting. As a consequence, the proposed
distributed discrete hashing algorithm works efficiently.

V. OUT OF SAMPLE EXTENSION AND HASH

FUNCTION LEARNING

The above methods are used to learn binary codes of the
training data in a distributed manner. Generally, the hash-
ing methods will construct a hash function for encoding out-
of-sample queries. In this paper, for convenience, we adopt
the nonlinear hash function f(x) = sign(PTK(x)), where
K(x) = [exp(−||x− a1||2/σ), . . . , exp(−||x− aq||2/σ)]T is
a q-dimensional column vector obtained using the RBF ker-
nel mapping and P ∈ Rq×r is a projection matrix projecting
K(x) into the low dimensional space. The vectors a1, . . . , aq
are the anchor points mentioned above and σ is the kernel
width. Like [30], when the binary codes of the training data are
obtained, we learn the hash function by solving the following
problem

min
P

||B − PTK(X)||2. (30)

Different from the centralized hashing method in [30], in
which such a problem can be directly solved by P =
(K(X)K(X)T )−1K(X)BT , since the data are distributed
across different agents in this paper, we also need to learn
the hash function in a distributed manner. We reformulate the

Algorithm 4: dCDH.

Input the parameters {γl}, γz, μ, η, ρ and anchor points
{ai}qi=1. Each agent l constructs the W l and Sl using the
local data points and anchor points. Initialize the variables
Bl, Zl, Dl, θl,M

l,Φl and the Lagrangian multiplier λl,Λl

for each agent l.
Loop until convergence or reach T times:

step 1: OptimizingB,Z with all the other variables fixed:
- Each agent l computes M̂ l according (22);

Repeat
- Each agent l computes
Al = 4η(M̂ l)TBl + 2γlB

l, Al
z = 2γz

m Zl;
- Each agent l updates [Bl, Zl] by

{Bl, Zl} = dPGD1({Bl}, {Zl}, {Al}, {Al
z}, {Dl}, {M l}).

Until convergence condition holds.
step 2: Optimizing {Dl}, {M l} with all the other
variables fixed:

- Each agent l transmits θl,Φl to its neighbors;
Repeat
- Each agent l updates θl and Φl according to (46) and

(53);
- Each agent l transmits θl, Φl to its neighbors;
- Each agent l updates λl and Λl according to (47) and

(54);
Until convergence condition holds.

- Each agent l updates Dl by Dl = 1
2 (2B

l1− θl) and
M l by M l = 1

2 (2B
l(Bl)T − Φl).

Output The binary codes {Bl}.

problem (30) as the following distributed optimization problem

min
P

m∑

l

||Bl − PTK(Xl)||2. (31)

We can still use the ADMM method to solve this problem.
According to the same ADMM update rule shown in Appendix
A, the iterative equations can be formulated as follows

⎧
⎪⎨

⎪⎩

Pl(k + 1) = (2ρ|Nl|Ip + 2K(Xl)K(Xl)
T )−1

(
2K(Xl)(B

l)T −Π(k) + 2ρ
∑

j∈Nl
Pj(k)

)
,

Πl(k + 1) = Πl(k) + 2ρ
∑

j∈Nl
(Pl(k + 1)− Pj(k + 1)) ,

(32)

where Pl are local variables and Πl are Lagrangian multipliers.

VI. COMPLEXITY ANALYSIS

In this section, we give the communication and computa-
tional complexity analyses of the proposed dDH and dCDH
algorithms. Before giving the analyses, we first recall all the
related quantities mentioned in this paper: the dimension of the
data d, the number of the agents m, the number of the anchor
points q, the length of the code r, the number of the data points
nl in agent l. In addition, the size of the truncated similarity
matrix U l used for constructing the local similarity matrix W l
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is (nl + q)× p. Among all the quantities, nl should be the only
large number, while the others are all much smaller than nl.

A. Communication Complexity

dDH: In the initialization stage, the network needs to broad-
cast the anchor points {ai}qi=1. The communication complexity
of this step is O(qdm) and such a step only needs to be im-
plemented once. In the main iteration, to update the variable
Z, each agent l needs to transmit Rl to its |Nl| neighbors and
the communication complexity of this step is O(rq|Nl|). When
constructing the hash function, each agent l needs to transmit its
local variable Pl to its |Nl| neighbors and the communication
complexity is O(rq|Nl|). Therefore, the overall communication
complexity of each agent l is O(qdm+ rq|Nl|), which is inde-
pendent of the data size nl.

dCDH: In the initialization stage, the communication com-
plexity of this step is also O(qdm). In step 1, to update the vari-
ableZ, each agent l also needs to transmitRl to its |Nl|neighbors
and the communication complexity of this step is O(rq|Nl|). In
step 2, each agent l needs to transmit its local variable θl and
Φl to its |Nl| neighbors and the communication complexity of
this step is O(r|Nl|+ r2|Nl|). In the stage of constructing the
hash function, the communication complexity is alsoO(rq|Nl|).
Therefore, the overall communication complexity of each agent
l is O(qdm+ r|Nl|(r + q)), which is independent of the data
size nl.

B. Computation Complexity

dDH: In the initialization stage, for each agent l, the time com-
plexity of constructingK(Xl) is O(dqnl). The time complexity
of constructing W l using the method in [7] is O(pd(nl + q)).
In the main iteration, the time complexity of updating B and Z
by dPGD algorithm is O(rp(nl + q)t), where t is the iteration
number of dPGD algorithm. In the stage of constructing the
hash function, the time complexity is O(q(q + r)nl + q2.376).
In summary, the main time complexity of each agent l is
O((dp+ dq + prt+ q2 + qr)nl), which is linear of the data
size nl.

dCDH: In the initialization stage, for each agent l, the time
complexity of constructing K(Xl) is O(dqnl) and the time
complexity of constructing W l is O(pd(nl + q)). In step 1, to
obtain M̂ l, each agent l needs to compute the smallest eigenvalue
of M l. The time complexity of this step is O(r2.376) using the
Coppersmith and Winograd algorithm [41]. The time complexity
of computingAl isO(r2nl) and the time complexity of updating
B and Z by dPGD1 algorithm is O((rp(nl + q) + r2nl)t

′),
where t′ is the iteration number of dPGD1 algorithm. In step
2, the time complexity of updating Φl is O(r2nl). In the
stage of constructing the hash function, the time complexity is
O(q(q + r)nl + q2.376). In summary, the overall time complex-
ity of each agent l is O((dp+ dq + prt′ + q2 + qr + r2t′)nl),
which is linear of the data size nl.

VII. EXPERIMENTS

In this section, we test the proposed distributed hashing al-
gorithms by image retrieval experiments. In all the experiments

below, we assume that the data are distributed across a connected
network consisting of 10 agents. The benchmarks used for
test are: CIFAR-10 [13], MNIST [1], and NUS-WIDE [7]. We
empirically set the parameters γl = γz = γ = 1, μ = 1e− 3,
η = 1e− 4. In the following, we will investigate the impacts
of these parameters. We set the maximum iteration T = 10. The
performance of the algorithm is not sensitive to the stepsize
ρ. The stepsize ρ mainly affects the convergence speed of
the ADMM based algorithm and generally a small stepsize
gives faster convergence. In the following experiments, we set
ρ = 0.1.

In the proposed algorithms, we need the anchor points to
construct W l. Generally, the more anchor points, the better
performance the hashing method is expected to achieve. How-
ever, the anchor points will bring additional computation and
communication, while a moderate number of the anchor points
are usually enough to ensure the performance. In real applica-
tions, one can choose 500-5000 anchor points according to the
allowable computing resource. In this section, we choose 1000
anchor points for all the examples. We compare the proposed
dDH and dCDH algorithms with the state-of-the-art centralized
unsupervised hashing methods including AGH [7], ITQ [8],
SGH [46], OCH [31], and DPLM [30]. Among them, DPLM
is a discrete hashing method, which learns binary codes with-
out relaxations, and the other four methods are all relaxation
hashing methods. In addition, we also compare the proposed
algorithms with the existing distributed unsupervised hashing
methods including DisH [26], SDH [28], PDH [28]. Among
the hashing methods for comparison, AGH, SGH, SDH, PDH
also need to use the anchor points. We also choose 1000 anchor
points for these methods. In the following examples, for the
distributed hashing methods, we divide the training data points
into 10 splits evenly and each agent collects one split. For the
compared centralized algorithms, we use a single agent to collect
all the training data points for learning.

All the results in the following experiments are averaged over
50 independent runs.

A. CIFAR-10: Test on Tiny Natural Images

In this example, the dataset for test is CIFAR-10. CIFAR-10
consists of 60 K images in 10 classes and each class contains
6 K images. Each image is represented by a 512-dimensional
GIST descriptor extracted from a 32× 32 color image. We
randomly select 1000 images from the dataset as the query (test)
set and use the remaining data as the training set. Since each data
point in CIFAR-10 is assigned a class label, the ground truth is
determined based on label agreement.

The results in terms of mean average precision (MAP) and
precision of top 5000 returns are shown in Table I. From Table I,
we see that the proposed dDH and dCDH methods outperform
all the other distributed hashing algorithms and most of the
centralized hashing methods except the discrete hashing method
DPLM, which demonstrates the effectiveness and efficiency of
the proposed algorithms. Note that the performance of dDH and
dCDH is very close to that of DPLM, which is the best com-
petitor in the centralized methods, so the proposed distributed
hashing algorithms do not lose much quality compared with the
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TABLE I
MEAN AVERAGE PRECISION (MAP) AND PRECISION OF TOP 5000 RETURNS ON CIFAR-10

TABLE II
TRAINING TIME ON CIFAR-10 (IN SECOND)

Fig. 1. The precision-recall curves with 128 bits on CIFAR-10.

centralized discrete hashing method. In addition, we see that
dCDH achieves better results than dDH, which implies that
the bits uncorrelation and balance constraints can improve the
quality of the binary codes.

Then we further report the training time consumption in Ta-
ble II. The results in Table II show that the proposed algorithms
are time efficient. Though dCDH takes the longer time than the
other distributed hashing methods, it achieves the best accuracy
performance.

We also report the complete precision-recall curves with 128
bits code in Fig. 1. The results shown in Fig. 1 are consistent to
those given in Table I. The curves of dDH and dCDH are close
to the curve of DPLM, and outperform all the other competitors.

Next, we investigate the impact of the parameter γ. We plot
the curve of the quantization error with respect to γ with 64
bits using dDH and dCDH algorithms in Fig. 2. We see that the
quantization error decreases as γ increases, and when γ ≥ 1,
the quantization error is close to zero. Then we further show the
MAP results with respect to γ in Fig. 3. We see that though larger
γ can guarantee smaller quantization loss, the performance of the
algorithms become worse on the contrary when γ is very large.
That is because the penalty term will dominate the overall loss
with large γ, making the optimization difficult. So we should
use a moderate γ to balance the quantization error and the
optimization difficulty.

We also investigate the sensitivity of the parameters μ and
η. The MAP results of dCDH with 64 bits with respect to
different values of μ and η are shown in Fig. 4. From the figures,
we see that the retrieval accuracy improves as μ, η increase,
but decreases when μ, η are large, which implies that the bit
uncorrelation and balance constraints can make the binary codes
more efficient, but excessively emphasizing the two constraints
will reduce the quality of the binary codes on the contrary. These
results are in line with the results shown in [47].

B. MNIST: Test on Hand-Written Digits

In this example, we test the above hashing methods on the
benchmark dataset MNIST. MNIST consists of 70000 images
of handwritten digits from 0 to 9. All the images in the dataset
are represented by 784-dimensional vectors. Also, the ground
truth neighbors are determined by label agreement.

Results in terms of MAP and precision of top 5000 returns are
shown in Table III. From Table III, we see that the performance
of the proposed dDH and dCDH algorithm is still close to that
of DPLM, and is better than the performance of all the other
methods, which is consistent to the results shown in last example.

C. NUS-WIDE: Test on Large-Scale Dataset

We further test all the hashing methods on the large-scale
dataset NUS-WIDE. NUS-WIDE consists of around 270,000
web images associated with 81 ground truth concept labels. Each
image in NUS-WIDE is represented by a 500-dimensional Bag-
of-Words (BOW) feature. Each two data points are defined as
neighbors if they share at least one label. We collect 21 most
frequent labels and randomly select 100 images for each label
as queries. The remaining images are used for training. Results
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Fig. 2. The impact of γ on the quantization error with 64 bits.

Fig. 3. MAP results w.r.t. γ with 64 bits on CIFAR-10.

Fig. 4. MAP results w.r.t. μ, ρ with 64 bits on CIFAR-10.

TABLE III
MEAN AVERAGE PRECISION (MAP) AND PRECISION OF TOP 5000 RETURNS ON MNIST
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TABLE IV
MEAN AVERAGE PRECISION (MAP) AND PRECISION OF TOP 5000 RETURNS ON NUS-WIDE

in terms of MAP and precision of top 5000 returns are shown in
Table IV. We see that the proposed dDH and dCDH algorithms
perform better than the other distributed hashing methods, and
the performance of the proposed algorithms is close to that of
the best centralized hashing method.

VIII. CONCLUSION

In this paper, we proposed a distributed discrete hashing
method to learn binary codes of distributed data. To guarantee
the effectiveness of the binary codes, we devised a distributed
discrete hashing algorithm, which solves the hashing problem
without using any relaxations. To make the binary codes more
efficient, we further added the bits balance and uncorrelation
constraints, and we represented the hashing problem with the bits
balance and uncorrelation constraints as a tractable distributed
optimization problem. Then we also proposed a distributed
constrained discrete hashing algorithm for solving this problem.
Experiments on large-scale benchmark datasets were provided
to show the superiorities of the proposed algorithms.

APPENDIX A
OPTIMIZING PROBLEM (20) W.R.T. D, M

With all the variables fixed but {Dl}, {M l}, the problem is
formulated as

min
Dl,M l

m∑

l=1

[||Bl1nl
−Dl||2 + ||Bl(Bl)T −M l||2]

s.t.
m∑

l=1

Dl = 0,
m∑

l=1

M l = nIr. (33)

The above problem can be separately solved by solving

min
Dl

m∑

l=1

||Bl1nl
−Dl||2

s.t.
m∑

l=1

Dl = 0, (34)

and

min
M l

m∑

l=1

||Bl(Bl)T −M l||2

s.t.
m∑

l=1

M l = nIr. (35)

We first solve problem (34). This should be the first time that such
a problem arises in distributed hashing, since the existing dis-
tributed hashing methods either did not consider the bits balance
and uncorrelation constraints or relaxed them for tractability. In
the literature, most of the distributed optimization tasks can be
cast as an optimization problem of the following form

min
x

m∑

l=1

fl(x)

s.t. x ∈ X , (36)

in which all the local objective functions {fl} have the same
optimized variable. However, in (33), each agent l owns an
individual variable Dl. The variables {Dl} are different but
coupled together through the linear constraint. In this situation,
it is difficult to directly apply the existing standard distributed
algorithms, such as distributed gradient descent [50] and dis-
tributed ADMM [49], to solving this problem.

Since problem (33) is a convex optimization problem, we can
solve the problem by solving its Lagrangian dual problem [52].
The Lagrangian dual problem of (33) can be formulated as

min
θ∈Rr

m∑

l=1

φl(θ), (37)

where

φl(θ) = max
Dl

{−||Bl1nl
−Dl||2 − (Dl)T θ}, (38)

and θ is the dual variable. Note that the optimization problem in
(38) can be analytically solved by

Dl =
1

2
(2Bl1− θ). (39)

Then we have that

φl(θ) =
1

4
||θ||2 − (Bl1nl

)T θ, (40)

and problem (37) can be represented as

min
θ∈Rr

m∑

l=1

[
1

4
||θ||2 − (Bl1nl

)T θ

]

,
(41)

which is the standard form of the distributed optimization as
shown in (36). It is easy to verify that problem (33) has zero
duality gap [53]. Therefore, we can first solve the dual problem
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(41), and then each agent l can obtain the corresponding optimal
solution Dl by (39).

To solve problem (41), we can devise distributed algorithms
based on the idea of ADMM. To apply ADMM, first, we need
to rewrite the problem (41) as follows

min
θl∈Rr

m∑

l=1

[
1

4
||θl||2 − (Bl1nl

)T θl

]

,

s.t. θl = θj , ∀j ∈ Nl, ∀l ∈ {1, . . . ,m}, (42)

where θl ∈ Rr are local variables, and θl = θj are consensus
constraints. Because of the transitivity between neighboring
nodes in a connected network, we can only consider the consen-
sus constraints between local neighbors rather than all the agents.
The augmented Lagrangian function of (42) is formulated as

m∑

l=1

⎡

⎣1

4
||θl||2 − (Bl1nl

)T θl +
∑

j∈Nl

λT
l,j(θl − θj)

+
ρ

2

∑

j∈Nl

||θl − θj ||2
⎤

⎦ , (43)

where λl,j are Lagrangian multipliers and ρ is the penalty param-
eter of augmented Lagrangian. ADMM solves such a problem
by repeating the following two steps [26], [27]:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θl(k + 1) := argmin
θl

∑m
l=1[

1
4 ||θl||2 − (Bl1nl

)T θl

+
∑m

l=1

∑
j∈Nl

λT
l,j(k)(θl − θj)

+ρ
2

∑m
l=1

∑
j∈Nl

||θl − θj ||2,
λl,j(k + 1) := λl,j(k) + ρ (θl(k + 1)− θj(k + 1)) ,

(44)

∀l ∈ {1, . . . ,m}, ∀j ∈ Nl, with θj = θj(k) for all j �= l. Ne-
glecting the terms that are independent of θl, to update θl(k + 1),
agent l needs to solve the following problem

min
θl

1

4
||θl||2 − (Bl1nl

)T θl +
∑

j∈Nl

(λT
l,jθl − λT

j,lθl)

+ ρ
∑

j∈Nl

||θl − θj(k)||2. (45)

The above problem involves the term λT
j,lθl because we consider

the network is symmetric, namely l ∈ Nj if j ∈ Nl. The above
problem can be analytically solved by setting the derivative with
respect to θl to zero. Then we can get the solution

θl(k + 1)

=
Bl1nl

−∑
j∈Nl

(λl,j(k)− λj,l(k)) + 2ρ
∑

j∈Nl
θj(k)

2ρ|Nl|+ 1
2

.

The update iteration can be further simplified. Define the
Lagrange multipliers λl =

∑
j∈Nl

(λl,j − λj,l), for all l ∈
{1, . . . ,m}. Then the whole update procedure can be
simplified as

θl(k + 1) =
Bl1nl

− λl(k) + 2ρ
∑

j∈Nl
θj(k)

2ρ|Nl|+ 1
2

, (46)

λl(k + 1) = λl(k) + 2ρ
∑

j∈Nl

(θl(k + 1)− θj(k + 1)) , (47)

for all l ∈ {1, . . . ,m}.
Then we use the same method to solve (35). The dual problem

of (35) can be formulated as

min
Φ∈Rr

m∑

l=1

ψl(Φ), (48)

where

ψl(Φ) = max
M l

{−||Bl(Bl)T −M l||2

− tr((M l)TΦ) +
n

m
tr(Φ)}, (49)

and Φ ∈ Rr×r is the dual variable. The optimization problem in
(49) has the analytical solution

M l =
1

2
(2Bl(Bl)T − Φ), (50)

and ψl(Φ) can then be represented as

ψl(Φ) =
Φ2

4
− tr(Bl(Bl)TΦ) +

n

m
tr(Φ). (51)

We also use ADMM method to solve the distributed optimization
problem

min
Φ∈Rr×r

m∑

l=1

[
Φ2

4
− tr(Bl(Bl)TΦ) +

n

m
tr(Φ)

]

. (52)

Since problem (52) are quite similar to problem (41), and we
use the same method to solve the problem, to avoid repetition,
we directly give the update equations, as follows:

Φl(k + 1) =
Bl(Bl)T − n

mIr − Λl(k) + 2ρ
∑

j∈Nl
Φj(k)

2ρ|Nl|+ 1
2

,

(53)

Λl(k + 1) = Λl(k) + 2ρ
∑

j∈Nl

(Φl(k + 1)− Φj(k + 1)) ,

(54)

for all l ∈ {1, . . . ,m}, where Φl are local variables and Λl

are Lagrangian multipliers. After solving the problem (52),
each agent l can obtain the corresponding optimal solution M l

by (50).

APPENDIX B
DISTRIBUTED SUPERVISED DISCRETE HASHING

In the above sections, we proposed a distributed unsuper-
vised discrete hashing method. The proposed distributed hashing
scheme can also be used for supervised hashing, as long as
we replace the unsupervised hashing objective in (18) with
a supervised hashing objective. In this section, we adopt the
objective of the supervised hashing in [40] as an example.
In [40], the bits balance and uncorrelation constraints were not
considered. To obtain more efficient binary codes, we add the
two constraints, and the distributed supervised hashing problem
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can be formulated as

min
Bl,Wl

m∑

l=1

[||Yl −WT
l B

l||2 + τ ||Wl|2]

s.t. Bl ∈ {−1, 1}r×nl ,

Wl =Wj , ∀j ∈ Nl, ∀l ∈ {1, . . . ,m},
B1n = 0,

BBT = nIr. (55)

where Wl ∈ Rr×q are classification matrices, and τ is a param-
eter. The matrix Yl ∈ Rq×nl stores the labels of the training data
Xl in agent l, and the (i, j)-th entry Y i,j

l = 1 if xj belongs to
the i-th class and Y i,j

l = 0 otherwise.
Like (19), we can represent the problem as follows

min
Bl,Wl,Dl,M l

m∑

l=1

[||Yl −WT
l B

l||2 + τ ||Wl|2 + μ||Bl1nl

−Dl||2 + η||Bl(Bl)T −M l||2]
s.t. Bl ∈ {−1, 1}r×nl ,

Wl =Wj , ∀j ∈ Nl, ∀l ∈ {1, . . . ,m},
m∑

l=1

Dl = 0,
m∑

l=1

M l = nIr, (56)

by introducing the auxiliary variables Dl and M l. Then we
can also solve the problem using the alternating optimization
method. The optimization problem with respect to the variables
{Dl}, {M l} is the same as that in the unsupervised case shown
above. The optimization problem with respect to the variables
{Bl} becomes

min
Bl

m∑

l=1

[||Yl −WT
l B

l||2 + μ||Bl1nl
−Dl||2

+ η||Bl(Bl)T −M l||2]
s.t. Bl ∈ {−1, 1}r×nl . (57)

This problem additionally involves the variables {W l} and the
optimization problem with respect to the variables {W l} is

min
Wl

m∑

l=1

[||Yl −WT
l B

l||2 + τ ||Wl|2]

Wl =Wj , ∀j ∈ Nl, ∀l ∈ {1, . . . ,m}. (58)

Problem (57) can also be solved by transforming it into an equiv-
alent distributed continuous optimization problem, and problem
(58) can be solved using the ADMM method. To avoid repetition,
we do not reformulate the specific optimization procedure here.
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