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Frequency-Domain Deep Guided Image Denoising
Zehua Sheng , Xiongwei Liu , Si-Yuan Cao, Hui-Liang Shen , and Huaqi Zhang

Abstract—Despite the tremendous advances in denoising
techniques, it’s still challenging to restore a clean image with
salient structures based on one noisy observation, especially at
high noise levels. In this work, we propose a frequency-domain
guided denoising algorithm to conduct denoising with the help
of a well-aligned guidance image. Thanks to their structural
correlations, the frequency characteristics of the guidance image
can indicate whether the frequency coefficients of the noisy target
image are contributed by noise or textures. Therefore, the explicit
frequency decomposition enables our denoising model to avoid
over-smoothing detailed contents. However, as two input images
are usually captured in different fields, their structures are not
always consistent. Therefore, we model guided denoising with an
optimization problem which considers both the representation
model of the guidance image and the fidelity to the noisy target.
Further, we design a convolutional neural network, called as
FGDNet, to explore the optimal solution. Due to the visual
masking phenomenon, human eyes are sensitive to noise in
the flat areas, but may not perceive noise around edges or
textures. Therefore, we expect to remove as much noise as
possible to guarantee the spatial smoothness of flat contents, while
also preserving high-frequency structures. Through frequency
decomposition, our model can process the low-frequency and
high-frequency contents separately. We also adopt a frequency-
relevant loss function to train the network. Experimental
results show that, compared with state-of-the-art guided and
non-guided denoisers, our FGDNet achieves higher denoising
accuracy and better visual quality in both flat and texture-rich
regions.

Index Terms—Frequency decomposition, guided image
denoising, convolutional neural network.

I. INTRODUCTION

RANDOM noise is one of the most common factors that
degrade the quality of digital images in modern camera

systems. For the last few decades, numerous studies have been
conducted to restore clean images directly from their noisy ob-
servations. They usually take the advantage of various image
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Fig. 1. Denoising results obtained by the guided restoration algorithm
SVLRM [18], the non-guided denoising algorithm MPRNet [24], and our algo-
rithm. SVLRM restores clear structures but produces splotched artifacts in the
flat areas. MPRNet over-smooths the details. Our algorithm achieves the best
visual results.

priors, such as self-similarity [1], [2], [3], [4], [5], [6], [7], spar-
sity [3], [6], [8], and low-rankness [4], [5], to improve their
capability of estimating image structures during noise removal.
Recently, the exploitation of neural networks further improves
the denoising performance [9], [10], [11], [12], [13], [14], [15],
[16]. However, it’s still difficult for these methods to distinguish
between detailed contents and random noise, especially in the
case of low signal-to-noise ratio (SNR).

Instead of exploring stronger image priors or designing more
complicated network architectures, a popular trend is to take
the original noisy image as the target and seek the help of ex-
ternal information provided by an aligned guidance image [17],
[18], [19], [20] with high SNR. For instance, using an additional
near-infrared (NIR) light source, we can acquire almost clean
NIR images to guide the denoising process for the noisy RGB
images captured in ambient light. To ensure that the captured
RGB-NIR image pairs are well-aligned, the work [21] presents
a dual-camera system. It contains two optically aligned digital
cameras as well as a beam splitter to divide the incoming light
into visible and NIR components. Since the images are simulta-
neously acquired in the same scene, their contents can be highly
correlated in most areas.

To conduct guided denoising using a pair of aligned images,
guided filtering [17] introduces an inspirational solution that the
clean target image can be estimated by a certain representation
of the guidance image. However, this model has two drawbacks.
First, although it can restore fine structures and rich details ac-
cording to the guidance image, its noise removal ability is some-
what limited. Two example results of NIR-guided RGB image
denoising obtained by SVLRM [18], a follow-up work of the
classical guided filtering, are illustrated in Fig. 1. Due to the vi-
sual masking phenomenon [22], human eyes may not be able to
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Fig. 2. Denoising results obtained by guided filtering [17] and our algorithm.
In the result of guided filtering, the unique structures of RGB image is over-
smoothed, and noise is not completely removed in the flat areas.

perceive the remaining noise around sharp edges. But it can be
noticeable in flat areas, usually appearing as splotched artifacts.
Therefore, to further improve the visual quality, it’s essential to
eliminate these artifacts.

Second, it cannot resolve the structural inconsistency issue,
which basically exists in all kinds of practical guided denois-
ing tasks when the input images have different modalities, such
as RGB/NIR, flash/no-flash, depth/RGB, etc. For NIR-guided
RGB image denoising, each image can have its unique textures
because the same object can have different reflectances to the
NIR and the visible light. As shown in Fig. 2, the unique struc-
tures of the target image are over-smoothed in the guided de-
noising result. In the follow-up work of guided filtering [18],
[20], this problem is still not fully solved.

In this work, given a noisy target image and its aligned clean
guidance image, we aim to generate a high-quality denoising re-
sult with rich details, while addressing the aforementioned two
problems. For a denoising task, our goals of restoring flat and
structurally rich areas are quite different. In the flat areas, we
expect to remove as much noise as possible to ensure the spa-
tial smoothness. When restoring image structures, due to the
visual masking phenomenon, it’s more important to preserve
clear edges and details than to eliminate noise completely. From
the perspective of image decomposition, flat areas are basically
composed of low-frequency components, while edges and de-
tails are caused by the intensity changes and thus belong to
the high frequencies. Hence, it motivates us to decompose the
images into various frequency layers and process them with dif-
ferent denoising schemes accordingly.

Different from current guided restoration methods that are di-
rectly conducted in the spatial domain, we propose to split the
input image pairs into various frequency layers based on patch-
wise 2D discrete cosine transform (2D-DCT). Then, guided de-
noising is processed within each frequency layer independently.
On one hand, in the low-frequency layers, we aim to recover the
spatial smoothness of the base components to avoid splotched
artifacts. On the other hand, we focus on reconstructing the
high-frequency image structures according to the guidance im-
age. The explicit division of the low and high frequencies ensures

that the above two processes can be conducted simultaneously
and individually.

The contribution of frequency analysis to guided denoising
is beyond that. It also helps to distinguish weak details from
random noise. According to the sparse coding theory [23],
clean images can be linearly represented by a limit num-
ber of atoms, each of which records a specific pattern. De-
note y, g ∈ Rs×s as a pair of patches extracted from the in-
put target and guidance images at the same position. As they
are structurally correlated and share many similar contents,
it’s natural to assume that they can be represented using the
same set of atoms. That is, y = n+ α0 +

∑K
k=1 αkdk and

g = β0 +
∑K
k=1 βkdk, where {dk}k=1,...,K is the atom set,

{αk}k=1,...,K and {βk}k=1,...,K are the corresponding coef-
ficients, α0 and β0 are two constants that denote the overall
brightness levels, n is the noise component. After transforming
x and g into the frequency domain, this linear representation
model still holds, i.e., T (y) = T (n) + α0δ +

∑K
k=1 αkT (dk)

and T (g) = β0δ +
∑K
k=1 βkT (dk), where T (·) denotes the

linear frequency transform function while δ is the Dirac delta
function whose values are zero except at zero frequency. Since
the atoms are sparsely distributed in the frequency domain
while noise is not, the frequency characteristics of the guid-
ance image can well indicate whether the frequency coefficients
of the noisy target image are contributed by noise or image
structures, including both strong edges and detailed textures.
In comparison, zero-frequency coefficients are less correlated
across different modalities. Hence, it’s essential to also adopt
the intra-correlation information of the noisy target image to
avoid severe intensity deviation.

To ensure that the guided denoising result is structurally faith-
ful to the input target image, we explicitly include both images
in the restoration framework. In this work, we construct an op-
timization model to obtain the mathematical form of our guided
denoising model. Based on the above analysis, our proposed
objective function is composed of three terms: a fidelity term
to constrain the similarity between the denoising result and the
input noisy target image, a linear representation term to recon-
struct image structures from the guidance image, and a noise
estimation term to further improve the accuracy of our guided de-
noising model. To avoid a time-consuming optimization process
and empirical setting of the parameters, we design a convolu-
tional neural network, called as FGDNet, to explore the optimal
solution. A more detailed description is given in Section III-A.

In the training stage, we also introduce a frequency-relevant
loss function to optimize the network by conducting different
supervision processes on different frequency components. On
low-frequency layers, we aim to remove as much noise as possi-
ble and eliminate artifacts in flat areas. On high-frequency layers,
in contrast, our main purpose is to preserve edges and details.
Previous studies on frequency learning [25], [26] demonstrate
that, neural networks are prone to focusing on low-frequency
contents in the training stage. Therefore, our frequency-domain
learning strategy and frequency-relevant loss function can en-
able the network to also pay attention to high frequencies, which
is beneficial for restoring images with more salient structures.
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In summary, the main contributions of this work are as fol-
lows:
� We introduce frequency decomposition into guided image

denoising to restore the low- and high-frequency contents
in different manners. It guarantees the superior ability of
noise removal, and also enables the denoising process to
effectively distinguish details from random noise.

� We model guided denoising with an optimization problem
to restore fine structures from the guidance image, while
overcoming structural inconsistency issues across differ-
ent modalities. We design a convolutional neural network,
named as FGDNet, to explore its optimal solution.

� Combining the frequency-domain correlations of different
modalities with the internal information learned from the
noisy target image, our algorithm outperforms state-of-the-
art denoising methods in terms of both accuracy and visual
quality on various guided denoising tasks.

II. RELATED WORK

A. Image Denoising

Image denoising is one of the most classical low-level vision
tasks that has been well explored for decades of years. Tech-
niques including filtering [27], [28], sparse representation [3],
[8], and low-rank approximation [4], [5] are commonly used
in designing traditional denoising algorithms. Based on the
self-similarity assumption of natural images, denoising is sig-
nificantly enhanced by the nonlocal framework [1], [2], [3], [4],
[5], [6], [7]. That is, similar patches within adjacent areas are col-
lected for collaborative noise reduction. However, these methods
often require a long computational time to achieve high accu-
racy, and also show less flexibility when facing more compli-
cated noise distributions.

Recently, numerous studies on deep learning have shown their
powerful capability in noise removal. With large amounts of
paired training data, the learning-based denoising methods out-
perform the traditional ones by a large margin. For real-world
image denoising, MIRNet [29] introduces a multi-scale network
architecture to receive contextual information from the low-
resolution representations while maintaining spatially-precise
high-resolution representations. NBNet [30] proposes to remove
noise by learning a set of reconstruction basis in the feature
space. Further, MPRNet [24] adopts a multi-stage architecture
that separates the full restoration process into several manage-
able steps. In [31], Uformer introduces a local-enhanced window
Transformer block to capture long-range dependencies with less
computational cost compared to the original Transformer archi-
tecture. ADNet [12] uses an attention module to estimate the
latent noise hidden in the complicated background. The model
is relatively small and can achieve competitive denoising per-
formance in blind denoising tasks [32].

However, acquiring extensive aligned noisy/clean image pairs
for training is quite expensive in real-world photography. There-
fore, some current studies focus on training denoising models
without supervision, which have achieved competitive perfor-
mance. In [33], the denoising model is designed based on the
Stein’s unbiased risk estimate theory. Assuming that the pixel

values of clean images aren’t statistically independent while
noise is conditional pixel-wise independent given a clean image,
Noise2Void [34] introduces a blind-spot network, presenting that
the denoising model can be trained in a self-supervised way. Fol-
lowing this, FBI-Denoiser [35] aims to handle Poisson-Gaussian
noise, AP-BSN [36] is developed for restoring clean sRGB im-
ages in real-world photography.

Overall, the denoising performance has been significantly im-
proved, but it’s still difficult for these approaches to preserve
weak details especially at high noise levels. In comparison,
our proposed guided denoising framework can well balance the
above two issues, producing clean images with fine structures
and rich details.

B. Guided Image Restoration

Since it’s difficult to estimate accurate structural information
based only on the noisy observations, current studies start to
seek the help of external information. Classical guided filter-
ing [17] assumes the filtering result can be linearly represented
by the guidance image in local windows, so that it can remove
noise while preserving fine structures. To avoid halo artifacts
around sharp edges, the works [37], [38] introduce edge-aware
constraints. In [39], a scale map is optimized to address the
cross-field problems including gradient magnitude variation and
gradient direction divergence.

Recently, deep learning is applied to the guided restoration
tasks. DJF [40] builds an end-to-end joint filtering network that
directly predicts the restoration results. To reduce the amount of
computation, the work [41] designs a network that first gener-
ates a low-resolution result and then up-samples it with a guided
filtering block. SVLRM [18] constructs a spatially variant lin-
ear representation model with learnable coefficients. Further,
UMGF [20] introduces a simplified formulation of guided fil-
tering inspired by the unsharp masking theory. Based on the
convolutional sparse representation theory, CUNet [19] intro-
duces a network that can not only process guided restoration
but also deal with guided fusion tasks. Different from previous
works combining the nonlinear activations of spatially invariant
kernels to predict the final output, the work [42] learns spatially
variant filtering kernels for each pixel. However, most of the
guided restoration works cannot strike a good balance between
detail preservation and noise removal, especially in the case of
high noise levels.

C. Frequency-Relevant Image Restoration

In digital image processing, frequency decomposition is one
of the basic techniques often employed in traditional image
restoration works. A classical solution to obtain the restored
images is designing adaptive filters in the frequency domain,
which has been a key step in various denoising [2], [7] and de-
blurring [43], [44] algorithms.

Recently, frequency-domain analysis has also shown its po-
tential in improving the performance of various learning-based
restoration frameworks. For image deblurring, SDWNet [45]
designs a wavelet reconstruction module that uses the infor-
mation recovered in the frequency domain to complement the
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spatial domain, so that the restored images can contain more
high-frequency details. In [46], the authors introduce a Resid-
ual Fast Fourier Transform with Convolution (Res FFT-Conv)
Block, which not only enables both low and high frequency
learning, but also allows the image-wise receptive field since
the Fourier transform is globally conducted.

For image super-resolution, the work [47] divides the feature
maps into multiple components based on 2D-DCT. Features in
different parts will be processed using different convolutional
layers so that the super-resolution can be conducted in a more
efficient way. In [48], the authors combine conditional learning
with frequency coefficient analysis to address the over-fitting
issue when dealing with blind super-resolution. This strategy
can also be extended to handling blind denoising tasks.

Currently, frequency analysis is also applied in denoising net-
works. Considering the tradeoff between receptive field and ef-
ficiency, MWCNN [49] replaces the conventional pooling op-
eration with 2D discrete wavelet transform (2D-DWT). Since
2D-DWT keeps both frequency and location information of fea-
ture maps, it can be helpful in preserving more detailed con-
tents. By combining frequency domain analysis and attention
mechanism, FAN [50] presents both good performance and in-
terpretability in real-world image denoising.

Different from previous restoration methods, our work is the
first to introduce frequency analysis into guided denoising tasks.
It takes the advantage of the frequency-domain correlation be-
tween the input cross-modal image pairs, thereby effectively
distinguishing weak textures from random noise. Based on this,
our guided denoising model can restore noise-free images with
fine structures and rich details from the noisy observations, even
at high noise levels.

III. PROPOSED ALGORITHM

In this section, we first introduce the proposed frequency-
domain optimization model for guided denoising. Then, we de-
scribe the architecture of our FGDNet constructed based on the
solution form of the objective function. Finally, we discuss the
loss function for training the network.

A. Frequency-Domain Optimization Model

Let Y denote the observed noisy target image corrupted by
the additive noise. The corresponding clean image and noise
component are denoted as X and N, respectively. The noise
model can thus be formulated as

Y = X+N. (1)

In actual application scenarios, the additive noise is usually
modeled by the mixed Poisson-Gaussian distribution [51]. As
our guided denoising process is identical in each of the three
channels of the RGB image, we assume Y,X,N ∈ RH×W for
brevity, where H and W denote the height and width of the
image respectively. The aligned guidance image is denoted as
G ∈ RH×W .

Based on patch-wise 2D-DCT, we decompose the input image
pair Y and G into various frequency layers. Here, 2D-DCT is
a common technique that transforms images into the frequency

Fig. 3. A visualization of our frequency decomposition process. Setting the
window size to s× s, the computed frequency tensor has s2 layers.

domain using multiple basis functions. Each frequency layer ag-
gregates the coefficients computed by the same basis function
in sliding windows of size s× s, and thus contains spatial fea-
tures at one certain frequency. In this work, the stride of the
sliding window is set to 1, and the images are processed with
zero padding of size s− 1. Those layers are then stacked into
two frequency tensors FY ∈ RH×W×L and FG ∈ RH×W×L.
Taking Y as an example, let pij be the patch of size s× s cen-
tered at position (i, j). We transform it into the frequency do-
main using 2D-DCT. The transformed patch is then vectorized
and denoted as uij ∈ Rs2×1, where the elements are arranged
from low frequency to high frequency. The element value of FY
at (i, j, l) is computed by FY (i, j, l) = uij(l), 0 ≤ l ≤ s2 − 1.
The layer number of FY is L = s2, which is determined by the
manually selected patch size. The other frequency tensor FG is
constructed in the same way. A visualization of our frequency
decomposition process is illustrated in Fig. 3.

After transforming the input image pair into two frequency
tensors, our guided denoising is then processed within each layer
independently. DefineFlY ,F

l
G ∈ RH×W as the l-th layers of the

two tensors. Motivated by the guided filtering theory, the l-th
layer of the restored frequency tensor F̂X can be estimated by
the linear representation of the guidance layer, i.e.,

F̂lX = Al � FlG, (2)

where � is the element-wise product operator and Al is the
linear coefficient matrix. However, due to the possible structural
inconsistency between Y and G, it’s not sufficient to rely solely
on the linear representation of the guidance layer to restore the
unique structures of the target layer. To make the restored result
structurally faithful to the target image, we propose to explicitly
include its noisy observation in the representation model.

To some extent, guided denoising is not much different from
the conventional denoising process, except that the guidance
image can provide external information. In previous studies, in-
ternal priors such as sparsity, self-similarity, even implicit ones
learned from training data, have shown their effectiveness in
noise removal. The major purpose of exploiting external infor-
mation is to reproduce the details that are concealed by the ran-
dom noise. Hence, to ensure that our guided denoising can ef-
fectively handle different noise levels, it’s beneficial to learn the
noise features using some internal priors.

Based on the above analysis, we construct an optimization
model to estimate the frequency tensor of the clean target image.
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Fig. 4. Architecture of our proposed FGDNet. First, the noisy target image is fed into the noise estimation module to predict a rough noise map. Then, the
frequency decomposition module transforms the noise map, the noisy target image and the guidance image into three frequency tensors. In the guided denoising
module, three weight tensors are computed with three separate encoders and decoders to synthesize the frequency tensor of the denoised image. Finally, the spatial
reconstruction module transforms the restored frequency tensor back to the spatial domain.

Stacking all the frequency layers together, the objective function
is formulated as

[FX ,FN ,A] = argmin
FX ,FN ,A

||Λ1 � (FX − FY )||2F︸ ︷︷ ︸
fidelity term

+ ||Λ2 � (FX −A� FG)||2F +Φ1(A)︸ ︷︷ ︸
linear representation term

+ ||Λ3 � (FX − FY + FN )||2F +Φ2(FN )︸ ︷︷ ︸
noise estimation term

,

(3)
whereFN is the frequency tensor of noise, {Λi}i=1,2,3 are three
parameter tensors, Φ1(·) is the regularization function of linear
coefficient A, and Φ2(·) is the internal prior of noise.

Suppose Φ1(·) and Φ2(·) are differentiable. To minimize this
objective function, we compute its partial derivatives with re-
spect to A, FN and FX , and let them be zero. Then we can
get

Â = Ψ1(FG,FX), (4)

F̂N = Ψ2(FY ,FX), (5)

and

F̂X =

[
(Λ1 +Λ3)� FY +Λ2 �A� FG−

Λ3 � FN

]
� (Λ1 +Λ2 +Λ3) , (6)

where Ψ1(·) and Ψ2(·) are related to the forms of Φ1(·) and
Φ2(·), and � is the element-wise division operator. The values
of {Λi}i=1,2,3 can be empirically determined by analyzing the
structural correlation between the image pair. For complicated
regularization terms, the optimization process may need to be
performed iteratively.

In fact, the solution of FN is equivalent to a conventional
denoising process, and FX can be regarded as a linear repre-
sentation of the noisy observation, the guidance, and the noise

TABLE I
THE AVERAGE PSNR (DB), SSIM, AND LPIPS VALUES OF FGDNET ON

IMAGES FROM THE RGB-NIR SCENE DATASET UNDER FREQUENCY

DECOMPOSITION WITH DIFFERENT PATCH SIZES. NOISE IS GAUSSIAN WITH A

STANDARD DEVIATION OF 0.2

component. In order to avoid empirically setting the values of
parameter {Λi}i=1,2,3, we introduce a convolutional neural net-
work, called as FGDNet, to accomplish this task. The forms of
Ψ1(·) and Ψ2(·) can also be implicitly learned by training the
network. Here, (6) can be re-written as

F̂X = WY � FY +WN � FN +WG � FG. (7)

Instead of directly computing the denoised image, FGDNet pre-
dicts three weight tensors WY , WN , WG ∈ RH×W×L, and
then compute the denoised frequency tensor using the linear
representation model in (7). Based on the inverse 2D-DCT, we
transform the restored frequency tensor back to the final denois-
ing result X̂.

B. Network Architecture

The architecture of FGDNet is displayed in Fig. 4. It is com-
posed of four parts: the noise estimation module, the frequency
decomposition module, the guided denoising module, and the
spatial reconstruction module.

The noisy RGB image Y is first fed into the noise estimation
module to obtain a rough noise map N̂. Here, we use ADNet [12]
as the backbone architecture, except that the channel number
of each feature map is reduced from the original 64 to 32. Its
attention mechanism helps to estimate the latent noise hidden in
the complicated background.
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TABLE II
ABLATION STUDIES ON GUIDANCE IMAGES, NOISE ESTIMATION, FREQUENCY DECOMPOSITION, AND FREQUENCY-RELEVANT SUPERVISION UNDER GAUSSIAN

NOISE (σ = 0.2) AND MIXED POISSON-GAUSSIAN NOISE (α = 0.02, σ = 0.2)

TABLE III
THE AVERAGE PSNR (DB) AND SSIM VALUES OF THE PRE-DENOISED AND

THE FINAL DENOISED IMAGES OBTAINED WITH DIFFERENT NOISE

ESTIMATORS ON IMAGES FROM THE RGB-NIR SCENE DATASET IN THE CASES

OF GAUSSIAN NOISE (σ = 0.2) AND MIXED POISSON-GAUSSIAN NOISE

(α = 0.02, σ = 0.2)

In the frequency decomposition module, the input RGB-NIR
image pair Y, G, and the estimated noise map N̂ are decom-
posed into 3 frequency tensors FY , FG and FN . Since 2D-DCT
is computed in sliding windows and its basis functions are fixed
and spatially invariant, the decomposition process can be easily
implemented using a convolution block with s2 fixed kernels of
size s× s.

Guided denoising is the core module of the network. Each
frequency tensor is fed into an individual encoder to compute a
C1-channel feature tensor. The encoder contains 6 convolution
blocks with a kernel size of 3× 3. Each convolution operation
is followed by batch normalization and ReLU. Down-sampling
in the first two blocks is implemented using max-pooling. Fea-
ture maps produced by the 2nd∼5th convolution blocks haveC2

channels. In this work, we set C1 = 48 and C2 = 96. The ob-
tained three feature tensors are then concatenated and fed into
three decoders with identical structures. Each decoder is also
composed of 5 convolution blocks with a kernel size of 3× 3.
The first 4 convolution blocks are followed by batch normaliza-
tion and ReLU, while the last one uses Tanh as the activation
function. Up-sampling here is implemented by bilinear interpo-
lation. The decoders predict three weight tensors to compute the
restored frequency tensor F̂X according to (7).

Spatial reconstruction is the inverse process of frequency de-
composition, which transforms the restored frequency tensor
back to the spatial domain. Similarly, it can also be implemented
using a convolution block.

C. Loss Function

In the training stage, the total loss functionL is the summation
of three terms, i.e., the restoration loss Lr, the frequency loss

Lf , and the noise estimation loss Ln, formulated as

L = Lr + Lf + Ln. (8)

Restoration loss: The restoration loss function aims to ensure
the overall denoising accuracy. In this work, it is implemented
by the �1-norm, defined as

Lr = ||X− X̂||1. (9)

Noise estimation loss: To train the noise estimation module along
with the entire network, we exploit a noise estimation loss to
obtain the rough noise map N̂. It is formulated as

Ln = λn||X−
(
Y − N̂

)
||1. (10)

Frequency loss: Considering that the flat contents and the image
structures belong to low and high frequencies, respectively, we
adpot a frequency loss to restore them in different manners.

Here, to give a specific definition of the low-frequency layer,
we estimate the energy distribution of those flat contents in the
frequency domain. According to the DCT theory, for a patch
p of size s× s, its zero frequency coefficient is computed by
fDC = s−1 ·

∑s2−1
i=0 p(i). If the patch is flat, the intensity of each

pixel can be very close to the average value. Hence, the energy
of p satisfies

Ep =

s2−1∑
i=0

p2(i) ≈ s2 ·

⎛
⎝ 1

s2

s2−1∑
i=0

p(i)

⎞
⎠

2

= f2DC. (11)

Based on the Parseval theorem, we can conclude that the en-
ergy of flat areas is basically distributed at zero frequency.
Therefore, it’s natural to regard the zero frequency layer as the
low-frequency layer to restore the desired flat contents. Besides,
according to the frequency-domain sparse coding model pre-
sented in Section I, the zero-frequency coefficient records the
overall brightness level of image. Therefore, it’s reasonable to
restore this single frequency layer individually.

The remaining frequency components record intensity vari-
ations (both soft and strong ones) among neighboring pixels,
which describe the features of edges and details at different lev-
els. Therefore, we treat them all as high frequencies where we
concentrate on estimating image structures.

Hence, in this work, our frequency lossLf is computed by the
summation of a low-frequency loss LLF and a high-frequency
loss LHF.
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TABLE IV
NUMBER OF PARAMETERS (M), FLOPS AND INFERENCE TIME (S) FOR DIFFERENT DENOISING NETWORKS

TABLE V
THE AVERAGE PSNR (DB), SSIM, AND LPIPS VALUES OF DIFFERENT ALGORITHMS ON IMAGES FROM THE RGB-NIR SCENE DATASET IN THE CASES OF

GAUSSIAN NOISE (σ = 0.1; 0.2) AND MIXED POISSON-GAUSSIAN NOISE (α = 0.02, σ = 0.2)

1) Low-frequency loss: To restore flat areas that are spatially
smooth without splotched artifacts, the low-frequency re-
construction error of each pixel is expected to be a con-
stant value close to zero. In other words, the error of each
pixel should be as small as possible, which can be handled
by penalizing the �1-norm of the error map. Besides, as
the reconstruction errors of adjacent overlapping patches
should be close to each other, we penalize its successive
difference as well. Hence, the low-frequency loss can be
mathematically formulated as

LLF = λl1||F̂0
X − F0

X ||1 + λl2||Dh

(
F̂0
X − F0

X

)
||22

+ λl2||Dv

(
F̂0
X − F0

X

)
||22 ,

(12)
whereDh(·) andDv(·) denote the horizontal and the ver-
tical successive difference functions, respectively.

2) High-frequency loss: Here, we use the �1-norm as the high-
frequency loss, i.e.,

LHF =

s2−1∑
l=1

λh||F̂lX − FlX ||1. (13)

The �1 loss leads to sparse solutions, so it’s also beneficial
for reducing high-frequency artifacts in the flat areas.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
FGDNet and compare it with state-of-the-art guided and non-
guided denoising methods on three practical guided denoising
tasks including NIR-guided RGB image denoising, flash-guided
no-flash image denoising, and RGB-guided depth image denois-
ing. Three metrics, i.e., peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM) [52], and learned perceptual image
patch similarity (LPIPS) [53] are adopted to assess the denois-
ing performance. Here, LPIPS measures the perceptual simi-
larity between the denoising result and the ground-truth image
using a pre-trained VGGNet. Compared with PSNR and SSIM,
LPIPS corresponds more to human perceptual judgments that
rely on high-order image structures and are context-dependent,
so it can be used to quantitatively evaluate the visual quality of
the denoising results. Higher PSNR and SSIM, and lower LPIPS
values indicate better performance.

A. Training Details and Parameter Settings

NIR-guided RGB denoising: is evaluated on the RGB-NIR
Scene Dataset [54]. It consists of aligned RGB-NIR image pairs
in 9 categories captured using modified digital single-lens reflex
cameras. We randomly select 389 pairs for training and 45 pairs
for testing. Each subset covers all 9 categories of images. We
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TABLE VI
THE AVERAGE PSNR (DB), SSIM, AND LPIPS VALUES OF DIFFERENT ALGORITHMS ON IMAGES FROM THE FLASH AND AMBIENT ILLUMINATIONS DATASET IN

THE CASES OF GAUSSIAN NOISE (σ = 0.1; 0.2) AND MIXED POISSON-GAUSSIAN NOISE (α = 0.02, σ = 0.2)

TABLE VII
THE AVERAGE PSNR (DB), SSIM, AND LPIPS VALUES OF DIFFERENT ALGORITHMS ON IMAGES FROM THE NYU V2 DATASET IN THE CASES OF GAUSSIAN NOISE

(σ = 0.1; 0.2) AND MIXED POISSON-GAUSSIAN NOISE (α = 0.02, σ = 0.2)

crop the training set into 95,000 pairs of 128× 128 patches as
training data. The entire training stage takes T = 100 epochs.

Flash-guided no-flash denoising: is evaluated on the Flash
and Ambient Illuminations Dataset [55] with image pairs in 6
categories. In our experiments, 1940 pairs are used for train-
ing while 558 pairs are used for testing. In the training stage,
we randomly crop patches of size 128× 128 from the input
image pairs. It takes T = 600 epochs to finish the training
process.

RGB-guided depth denoising: is conducted on the NYU
v2 Dataset [56], where 1000 pairs of them are used for
training and the remaining 449 ones are for evaluation. It
also takes T = 600 epochs to accomplish training. Patches
of size 128× 128 are randomly cropped in each training
epoch.

In this work, we focus on dealing with Poisson noise and
Gaussian noise, which are two main noise types of modern cam-
era sensors. Their intensities are indicated by α and σ, respec-
tively. In each epoch, noisy patches are generated with random
noise levels, with α ranging from 0 to 0.02 and σ ranging from
0 to 0.2. The network is trained using the Adam optimizer [57]
with parameters β1 = 0.9 and β2 = 0.999. The learning rate
is initially set to 0.0003, and changed to 0.0001 after epoch
0.1 · T . For the last 0.7 · T epochs, the learning rate is set to
0.00005. The weight decay is set to 0.0001, and the batch size
is 24. We use 1 Nvidia GeForce GTX 2070 GPU to train the
network.

After going through various parameter settings, we conclude
that our algorithm is not parameter-sensitive. As shown in Ta-
ble I, FGDNet obtains similar PSNR, SSIM and LPIPS values
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Fig. 5. Denoising results of FGDNet with and without guidance image under
mixed Poisson-Gaussian noise (α = 0.02, σ = 0.2).

Fig. 6. Denoising results of FGDNet with and without noise estimation under
mixed Poisson-Gaussian noise (α = 0.02, σ = 0.2).

under frequency decomposition with different patch sizes. Bal-
ancing denoising accuracy and model size, we set patch size
s = 7. For loss function, we set λn = 10, λl1 = 0.5, λl2 = 10
and λh = 2.

B. Ablation Studies

In this section, we conduct ablation studies on image pairs
from the RGB-NIR Scene Dataset [54] to validate the influence
of guidance images, noise estimation, frequency decomposition,
and frequency-relevant supervision to our algorithm.

Guidance image: To demonstrate the contribution of guidance
images to denoising, we use the noisy target image to guide its
own denoising process for comparison. Without changing the
network architecture, the original guided denoising framework
can be converted into a non-guided one. Table II shows that,
in this case, the denoising accuracy is significantly decreased.
Visual results in Fig. 5 show that, without additional guidance
images, both edges and details are over-smoothed during noise
removal.

Noise estimation: To show the necessity of noise estimation
while keeping the same model size, we remove the noise estima-
tion loss in the training stage so as not to force the output of the

Fig. 7. Denoising results with and without frequency decomposition under
mixed Poisson-Gaussian noise (α = 0.02, σ = 0.2).

Fig. 8. Denoising results with and without frequency supervision under mixed
Poisson-Gaussian noise (α = 0.02, σ = 0.2).

original noise estimation module to be noise. Table II demon-
strates that the introduction of noise estimation contributes to
higher denoising accuracy. As shown in Fig. 6, it can further
reduce the splotched artifacts around flat areas.

To further show that an inaccurate noise estimation does not
have a bad influence on denoising performance, we evaluate our
proposed FGDNet in a more challenging situation. That is, we
replace its backbone from the original modified ADNet (denoted
as NEst-A) with a modified DnCNN [9] (denoted as NEst-D)
which only contains three convolution blocks. By subtracting
the estimated noise maps from the noisy target images, we can
obtain the pre-denoised images. The similarity between the pre-
denoised and the ground truth images can indicate the denoising
abilities of the two noise estimators. As shown in Table III, the
noise estimators only produce rough noise maps. However, even
if the highly inaccurate estimated noise map obtained by NEst-D
still contributes to a slight performance gain.

Frequency decomposition: Frequency-domain guided denois-
ing is the core idea of our work. To evaluate its effectiveness, we
conduct guided denoising without frequency decomposition for
comparison. That is, the average weighting is computed in the
spatial domain. To retain the same model size, we modify the
frequency decomposition module and the spatial reconstruction
module into two trainable convolution blocks with kernels of
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Fig. 9. Visualization of three frequency tensors, three weight tensors, and the restored frequency tensor on the zero frequency layer and the first high frequency
layer. Frequency tensors are normalized between 0 and 1 for display, while weight tensors are displayed in pseudo color.

the same size. As shown in Table II, our frequency decomposi-
tion contributes to achieving higher accuracy. The visual results
shown in Fig. 7 demonstrate that using frequency decomposi-
tion can not only restore sharper edges and finer details, but also
alleviate artifacts around flat areas.

Frequency-relevant supervision: To demonstrate the contribu-
tion of frequency-domain supervision to guided denoising, we
retrain our FGDNet without frequency loss. See Table II for the
quantitative comparison. Both cases obtain similar PSNR and
SSIM values. With frequency loss, our FGDNet can achieve
lower LPIPS values, indicating better visual quality. As shown
in Fig. 8, the frequency-relevant supervision helps guided de-
noising preserve richer and more accurate details.

C. Evaluation and Comparison

To demonstrate the contribution of each frequency tensor in
regressing the restoration result, we visualize different frequency
layers and their weight tensors in the NIR-guided RGB image
denoising task. Denote ψ = Y ,N , orG. As displayed in Fig. 9 ,
the zero frequency layer F0

ψ records the base contents of the im-
age. The weights of the noisy RGB imageW0

Y and the estimated
noise map −W0

N are close to each other with slight difference
and also much larger than that of the NIR image W0

G. That
is, the network implicitly takes the advantage of the input guid-
ance image to further refine the denoising result without causing
severe color deviation. As a result, the restored low-frequency
contents are clean and spatially smooth.

In comparison, the high-frequency layers record structural in-
formation of the image. Taking the first one as an example, the
restoration result is contributed by both input images. The guid-
ance image plays the role of ensuring structural saliency and
reducing unwanted high-frequency responses for the flat areas.
Patch I and Patch II, as marked by the yellow boxes, display
the structurally inconsistent contents between the input RGB
and NIR images. When dealing with inconsistent structures,
the weight values of the guidance image are close to zero to
avoid transferring its unique contents to the denoising result. In
the restored frequency layer F̂1

X = W1
Y � F1

Y +W1
N � F1

N +
W1

G � F1
G, the reconstructed structural information is salient

and clean, and also faithful to the target image.
Further, we quantitatively evaluate our algorithm on three dif-

ferent guided denoising tasks: NIR-guided RGB image denois-
ing, flash-guided no-flash image denoising, and RGB-guided
depth image denoising. We also compare it to the state-of-the-art
guided restoration algorithms including GF [17], CFJR [39],
SVLRM [18], CUNet [19], DKN [42], and UMGF [20], as
well as non-guided blind denoising algorithms including AD-
Net [12], MIRNet [29], NBNet [30], MPRNet [24], HINet [58],
Uformer [31], DGUnet [59], and NAFNet [60]. For a fair com-
parison, we conduct an exhaustive search for the optimal param-
eter settings of GF and CFJR. The remaining comparative algo-
rithms are learning-based ones. We retrain their network mod-
els using the official codes provided by the authors on the same
training set as ours. We use an additional dataset that contains
3859 images provided by [12] to generate synthetic noisy/clean
image pairs when training the non-guided denoising algorithms.
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Fig. 10. Denoising results on the RGB-NIR Scene Dataset under Gaussian noise (σ = 0.1) obtained by the comparative non-guided and guided denoising
methods, and our FGDNet with different model sizes.

The training parameters are exactly set according to the corre-
sponding papers. For color image denoising, the comparative
methods process each channel independently, which is the same
as our FGDNet.

In addition, to show the influence of model size on the denois-
ing accuracy, we conduct guided denoising using two alternative
versions of FGDNet with different model sizes, i.e., FGDNet-m
(C1 = 32,C2 = 64), and FGDNet-s (C1 = 24,C2 = 48). Their
numbers of parameters, floating points per second (FLOPs), and
inference time are listed in Table IV along with other compara-
tive algorithms. Here, FLOPs and inference time are measured
with input images of size 128× 128. We can observe that the
non-guided denoising models are basically much larger than the
guided ones. In comparison, our FGDNet not only has smaller
parameter numbers, but also has lower computational complex-
ity and require less time to complete the denoising process. More
specifically, our FGDNet spends 3.57 ms on noise estimation,
and 8.32 ms on the remaining guided denoising step including
frequency transformation. Here, frequency decomposition only
takes about 0.13 ms.

NIR-guided RGB image denoising: is evaluated on the RGB-
NIR Scene Dataset [54]. Table V lists the average PSNR, SSIM
and LPIPS values on the test set. Among the competing al-
gorithms, the non-guided approaches basically achieve higher
PSNR and SSIM values than the guided ones. Here, PSNR is a
per-pixel measure. SSIM evaluates similarity based on the local
mean, variance, and covariance values, which are all statistical
metrics. Hence, both PSNR and SSIM are sensitive to inten-
sity changes, and can be employed to indicate whether noise is
completely removed. Therefore, the non-guided denoisers have
stronger noise removal abilities. In fact, the denoising accuracy
can be affected by a series of complicated factors, such as the
complexity of the network architecture, the size of the model,
the training scheme, etc. These non-guided denoisers basically
adopt more complicated network designs and larger model sizes.
It’s reasonable that they may have higher robustness when deal-
ing with different noise levels. However, as discussed in [53],
PSNR and SSIM cannot perceive high-order structures as in hu-
man judgments. A blurry output can also achieve high PSNR
and SSIM values. As shown in Fig. 10, all non-guided models
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Fig. 11. Denoising results on the realistic RGB-NIR image pair obtained by the comparative non-guided and guided denoising methods, and our FGDNet with
different model sizes.

produce very clean denoising results, but the detailed contents
are over-smoothed at the same time.

Compared to non-guided denoisers, the superiority of compet-
ing guided denoising models including CFJR, SVLRM, CUNet,
and UMGF is that they basically obtain lower LPIPS values, as
listed in Table V, which indicates their better visual quality.
The visual comparison in Fig. 10 demonstrates that, the supe-
rior visual quality lies in the fact that they can make the use
of the additional structural information of the guidance image
to restore the target image with richer details. However, when
dealing with structurally inconsistent contents, the guided de-
noisers GF, CFJR, SVLRM and UMGF can produce ghosting
artifacts. Different from the aforementioned guided denoising
models, DKN exploits the guidance image only to compute the
weights and offsets for a set of deformable kernels, and then
uses them to filter the noisy target image to obtain the restora-
tion result. It doesn’t explicitly involve the guidance image into
the restoration model, and therefore cannot make the best use
of its structural information to restore clean images with salient
structures.

In addition, the competing guided denoising algorithms in-
cluding GF, SVLRM, and UMGF have a common drawback
that they cannot remove noise completely, especially at high
noise levels. Therefore, they basically obtain lower PSNR and
SSIM values than the non-guided ones. More specifically, GF
uses a local linear representation model of the guidance image
to estimate the restored target image. Denote y, g as a pair of
patches extracted from the input target and guidance images Y
and G at the same position, respectively. The restored patch
is computed by x̂ = a · g + b, where a = Cov(y,g)/(vg + ε)
and b = y − a · g. Here, y and g are the mean pixel values of
y and g, vg is the variance of pixel values of patch g, Cov(·) is
the covariance function, and ε is a smoothness-related param-
eter. As discussed in [17], when g is flat, i.e., vg ≈ 0 � ε, we
can obtain a ≈ 0 and b ≈ y. In other words, GF is equivalent to
mean filtering in the flat areas, which is the reason for its limited
denoising ability.

SVLRM predicts two linear coefficient mapsFa andFb using
a shared convolutional network and estimates the restored target
image by X̂ = Fa �G+ Fb. However, as analyzed in [20], it’s
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Fig. 12. Denoising results of flash/no-flash image pairs on the Flash and Am-
bient Illuminations Dataset (σ = 0.1).

actually difficult to disentangle the functions and the represen-
tations of Fa and Fb using a shared network, especially without
corresponding supervisions. Hence, it cannot guarantee that Fa
effectively accomplishes structure transfer from the guidance
image and Fb retains the clean base components of the noisy
target image since both of them are learned implicitly.

UMGF uses mean filtering to obtain the base layers YL and
GL of the noisy target image Y and the guidance image G,
respectively. Then, it computes the corresponding detail lay-
ersYm = Y −YL andGm = G−GL. Here, UMGF directly
uses YL as the base layer of the denoising result, and learns a
linear coefficient map F to regress the restored detail layer by
F�Gm. However, due to the limited denoising ability of mean
filtering, in the training stage, the computation of F�Gm not
only has to complete the structure transfer, but also has to com-
pensate for the inaccurate noise removal of the base layer. It’s
actually difficult to depend only on such a linear representation
of the detail layer extracted from the guidance image to well bal-
ance the above two issues. Therefore, we can observe from the
denoising results that, UMGF not only causes splotched artifacts
but also slightly blurs the image structures.

In comparison, our FGDNet, even the smallest FGDNet-s,
outperforms all guided and non-guided comparative methods

Fig. 13. Denoising results of depth/RGB image pairs on the NYU v2 Dataset
(σ = 0.1).

with higher PSNR, SSIM and lower LPIPS values, showing that
it achieves both the highest denoising accuracy and also the
highest visual quality. Thanks to the explicit frequency decom-
position, our FGDNet can simultaneously focus on the noise
removal of low-frequency components and the structure recon-
struction of high-frequency components. The noise estimation
term can further ensure its robustness to different noise levels.
The visual result in Fig. 10 shows that FGDNet not only can
restore flat contents that are spatially smooth without splotched
artifacts, but also reconstructs salient structures based on the
guidance image. In addition, due to the data fidelity constraint
in our restoration model, our FGDNet effectively avoids trans-
ferring inconsistent contents from the guidance image. As shown
in Fig. 10, it can restore image structures faithfully to the noisy
target input, even when severe inconsistencies occur, marked by
the blue boxes.

We also evaluate our algorithm on the realistic RGB-NIR pairs
obtained by our dual-camera system. As shown in Fig. 11, the
image pair is captured in the low-light environment with addi-
tional NIR light provided by an NIR lamp. For clear illustration,
the RGB input and the denoised images are processed with tone
mapping. Similar to the restoration results on synthetic data, our
algorithm can effectively remove noise and cause much fewer
artifacts than the comparative methods. Non-guided denoising
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methods tend to over-smooth the details. Highlights in the NIR
image leave ghosting artifacts in the results obtained by guided
denoising methods including GF, CFJR, SVLRM, and UMGF,
while our algorithm is not affected.

Flash-guided no-flash image denoising: is validated on the
Flash and Ambient Illuminations Dataset [55]. Table VI shows
that our FGDNet basically achieves the highest accuracy under
different noise levels. Visual results are displayed in Fig. 12.
Similarly, all non-guided algorithms over-smooth the details.
Guided denoising methods including GF, CFJR, SVLRM,
CUNet and UMGF cause ghosting artifacts due to the shadows
in the flash image. In comparison, our FGDNet not only removes
noise completely, but also preserves fine structures faithfully to
the target image.

RGB-guided depth image denoising: is validated on the NYU
v2 Dataset [56]. Quantitative and visual results are shown in
Table VII and Fig. 13, respectively. Compared with the state-of-
the-art non-guided denoising algorithms, our FGDNet achieves
higher denoising accuracy, and can recover depth-discontinuity
pixels according to the guidance RGB image. Traditional guided
denoising algorithms including GF and CFJR bring unwanted
textures from the RGB image into the restored depth images. In
comparison, our restored clean depth images have fewer artifacts
and finer structures.

V. CONCLUSION

In this work, we propose a frequency-domain guided denois-
ing algorithm to restore clean images from well-aligned image
pairs. Different from common guided restoration approaches
that are directly conducted on the image itself, we decompose
the image pairs into various frequency layers and conduct guided
denoising within each layer independently. To deal with the pos-
sible structural inconsistency problem between the image pair,
we take into account both the representation model with re-
spect to the guidance image and the structural fidelity to the
target image. We construct an optimization function to explore
its mathematical formulation, and solve it using a convolutional
network, called as FGDNet. To restore flat contents without
artifacts and also clear structures, we further introduce a fre-
quency loss to conduct different supervision processes on the
low-frequency layer and the high-frequency layers. Compared to
the state-of-the-art approaches, our FGDNet can achieve higher
accuracy and also better visual quality.
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