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Multispectral Image Super-Resolution via RGB
Image Fusion and Radiometric Calibration

Zhi-Wei Pan and Hui-Liang Shen

Abstract— Multispectral imaging is of wide application for
its capability in acquiring the spectral information of scenes.
Due to hardware limitation, multispectral imaging device usually
cannot achieve high-spatial resolution. To address the issue, this
paper proposes a multispectral image super-resolution algorithm,
referred as SRIF, by fusing the low-resolution multispectral
image and the high-resolution (HR) RGB image. It deals with
the general circumstance that image intensity is linear to scene
radiance for multispectral imaging devices while is nonlinear
and unknown for most RGB cameras. The SRIF algorithm
first solves the inverse camera response function and a spectral
sensitivity function of RGB camera, and establishes the linear
relationship between multispectral and RGB images. Then the
unknown HR multispectral image is efficiently reconstructed
according to the linear image degradation models. Meanwhile,
the edge structure of the reconstructed HR multispectral image
is kept in accordance with that of the RGB image using a
weighted total variation regularizer. The effectiveness of the
SRIF algorithm is evaluated on both public datasets and our
image set. Experimental results validate that the SRIF algorithm
outperforms the state-of-the-arts in terms of both reconstruction
accuracy and computational efficiency.

Index Terms— Multispectral imaging, super-resolution, camera
response function, spectral sensitivity function, weighted total
variation, image reconstruction, image fusion.

I. INTRODUCTION

MULTISPECTRAL imaging acquires spectral informa-
tion of scenes and has been a promising tool for

applications in biomedicine [1], remote sensing [2], color
reproduction [3], and etc. Although multispectral imaging
can achieve high spectral resolution, it has the limita-
tion of low spatial resolution when compared with general
RGB cameras [4]. The objective of this work is to reconstruct
an high-resolution (HR) multispectral image by fusing a low-
resolution (LR) multispectral image and an HR RGB image
of the same scene.

Fig. 1 shows the hybrid imaging system employed in this
work. The multispectral imaging device, which will also
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Fig. 1. Schematic diagram of the hybrid imaging system. The multispectral
imaging device, which consists of a monochrome camera and a tunable filter
module, acquires LR multispectral images. HR RGB images can be acquired
by replacing the multispectral imaging device with the RGB camera while
keeping the same viewpoint.

be referred as multispectral camera hereafter, consists of a
monochrome camera and a liquid crystal tunable filter (LCTF)
module. The multispectral camera acquires multiple LR band
images at different wavelengths. The HR RGB image of the
same scene can be acquired by replacing the multispectral
camera with an RGB camera. As a multispectral imaging
device usually aims at acquiring faithful spectral informa-
tion, it always uses high-quality monochrome camera whose
intensity response is linear to the scene radiance entering the
imaging system. For most RGB cameras, however, the image
intensity is nonlinear to the scene radiance.

The acquired images and the target image to be recon-
structed are related by physical imaging models. The
LR multispectral image is spatially degraded by Gaussian blur
and downsampling operations, provided that the monochrome
camera has the linear response function. The Gaussian blur
models the point spread function (PSF) of image sensor in
high spatial resolution. The RGB image is spectrally degraded
with the effect of spectral sensitivity function (SSF) and also
subject to the effect of camera response function (CRF). The
SSF integrates spectral reflectance into RGB triplets. The
CRF relates scene radiance to image intensity, and can be
either linear or nonlinear to meet different scenarios.

This paper proposes a multispectral image super-resolution
algorithm, which is referred as SRIF, to reconstruct the target
HR multispectral data with unknown SSF and CRF via RGB
image fusion and radiometric calibration. In the algorithm,
the inverse CRF (iCRF) and SSF are solved alternately by
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keeping the relationship between the acquired multispectral
and RGB images. The iCRF and SSF are computed under the
constraints of monotonicity and smoothness, respectively. The
linear relationship among pixels in multispectral image will
remain the same in the RGB image linearized by the iCRF.

The reconstruction of HR multispectral image is formulated
as an optimization problem. The cost function contains two
data-fitting terms and an edge-preserving prior regularizer. The
data-fitting terms model the spatial and spectral degradations.
The prior regularizer, in the form of weighted total variation
(wTV), incorporates the edge structure information of the
RGB image into the reconstructed multispectral image, based
on the assumption that the edge structures of RGB image
and band images are highly correlated. The reconstruction
is performed on a low-dimensional subspace of the LR
multispectral image. The multispectral image reconstruction
problem is finally solved by the alternating direction method
of multipliers (ADMM) algorithm [5] in an iterative manner.
The subproblems in each iteration are simple and can be solved
in closed form.

To summarize, the main contributions of this work are as
follows:

• A super-resolution algorithm is proposed to reconstruct
HR multispectral image under the guidance of an HR
RGB image. Compared with the state-of-the-arts, this
algorithm deals with the more general circumstance that,
in addition to the unknown SSF, the CRF of RGB camera
is nonlinear and also unknown.

• The iCRF and SSF are solved alternatively under appro-
priate constraints. By recovering an intrinsic linear rela-
tionship from the RGB image, the initial iCRF can be
estimated robustly without knowing SSF.

• The reconstruction of HR multispectral image is guided
by the edge structure of RGB image via the wTV reg-
ularization. The edges can be well preserved even when
the original LR band images are heavily corrupted by
noise.

• The subproblems in the ADMM iterations are all
solved in closed form to improve computation effi-
ciency. This makes our algorithm suitable for practical
applications.

A. Organization and Notation

The rest of this paper is organized as follows. Section II
reviews the related work on multispectral image reconstruction
and radiometric calibration. Section III introduces our SRIF
algorithm that consists of radiometric calibration (i.e., iCRF
and SSF computation) and HR multispectral image reconstruc-
tion. The implementation of our algorithms is elaborated in
Section IV. Section V shows the experimental results, and
finally Section VI concludes the paper.

For clarity, Table I lists the main notations and their corre-
sponding meanings used in this work.

II. RELATED WORK

In the community of remote sensing and computer vision,
the spatial super-resolution of multispectral images is achieved
by image fusion. Pansharpening has been widely employed

TABLE I

MAIN NOTATIONS USED IN THIS WORK

to fuse the LR band images with an HR panchromatic
(PAN) image [6]. With only one HR image available, how-
ever, pansharpening can produce obvious spectral distortion
when compensating spatial details. To deal with this lim-
itation, most recent image fusion algorithms employ HR
RGB image to improve both spatial resolution and spectral
accuracy [4], [7]–[11]. Our work also belongs to this category.

The fusion of multispectral and RGB image can be conve-
niently formulated in the Bayesian inference framework. The
prior knowledge is usually learnt from the scene of interest
to improve the accuracy of fused spectral data. For example,
the work [12] makes use of a stochastic mixing model (SMM)
to learn the prior knowledge of the underlying spectral scene
content. In [13], a prior spectrum distribution relating to linear
mixing model is introduced. A Gibbs sampling algorithm is
used to generate samples asymptotically distributed according
to this prior distribution. It should be noted that the extraction
of prior information usually requires relatively intensive com-
putation, which will decrease the reconstruction efficiency.

Matrix factorization has been widely employed in image
fusion. As band images are highly correlated, they can be
decomposed into an orthogonal subspace basis and corre-
sponding coefficients by principal component analysis (PCA)
[14]. Inferring in subspace can decrease computational burden
and improve solution stability. Based upon spectral unmixing
principle [15], K-SVD factorization is adopted in [16] to learn
the spectral dictionary from the LR hyperspectral image. The
work [17] utilizes the local low-rank property to unmix both
the hyperspectral and multispectral images in a coupled fash-
ion. Considering the redundancy and correlation in spectral
domain, low-rank matrix factorization is applied in [18] to
exploit the latent low-dimensional structure existing in high-
dimensional data. In addition, sparse promoting technique is
used to yield unique matrix factorization. A set of basis that
represents the reflectance spectra is obtained in [19] by apply-
ing sparse matrix factorization. The SNNMF algorithm [7]
learns a nonnegative spectral basis by solving a constrained
sparse representation problem.

Tensor factorization has the potential to fully exploit the
inherent spatial-spectral structures during image fusion by
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naturally representing the multispectral image as a three
dimensional tensor. The work [20] incorporates the non-local
spatial self-similarity into sparse tensor factorization and casts
the image fusion problem as estimating sparse core tensor and
dictionaries of three modes. The CSTF algorithm [11] uses a
coupled sparse tensor factorization based approach for image
fusion by imposing a sparse constraint on the core tensor.

Regularization techniques have also been employed to
produce reasonable approximate solutions when the fusion
problems are ill-posed. For example, the work [14] introduces
a sparse regularization term based on the overcomplete dic-
tionary learnt from natural images. An edge-preserving regu-
larizer, which is in the form of vector total variation, is used
in the HySure algorithm [8] to promote a piecewise-smooth
solution. The NSSR algorithm [4] uses a clustering-based
regularizer that exploits the spatial correlations among local
and nonlocal similar pixels. The CO-CNMF algorithm [10]
adopts the sum-of-squared-distances regularizer to yield
high-fidelity endmember estimation. Regularization problem
is usually solved using an iterative procedure. To decrease
computational complexity, the properties of decimation matrix
are explored in [21] to derive an analytical solution for the
�2 norm regularized super-resolution problem. In addition,
the work [22] derives an explicit solution to the regular-
ized image fusion problem based on the Sylvester equation.
By exploiting the Woodbury formula, a generalized Sylvester
equation associated with the multi-band image fusion problem
is solved with the R-FUSE algorithm in a more robust and
efficient way [9].

Deep learning presents new solutions for the multispectral
image super-resolution. The main principle of this category
is to learn a mapping function between LR and HR images
in a fully supervised manner. The work [23] achieves this
goal by training a deep neural network with the modified
sparse denoising autoencoder, and regarding pansharpening as
a simple image regression problem. PanNet [24] has the ability
to preserve both the spectral and spatial information during
the learning process, as its network parameters are trained
on the high-pass components of the PAN and upsampled LR
multispectral images. The work [25] learns the HR images as
priors via deep convolutional neural network based learning.
The priors are incorporated into the fusion framework to
further improve performance. These end-to-end supervised
learnings need the availability of diverse HR hyperspectral
images to guarantee the accuracy, otherwise the mapping
function may cause spectral distortion when applied to the
images acquired in different situations. An unsupervised sparse
Dirichelet-Net [26] is proposed to solve the fusion problem
without the pretraining stage. It consists of two deep learning
networks that share the same decoder weights, enabling the
extraction of spectral basis and spatial representations in an
unsupervised fashion.

Considering that our algorithm involves radiometric cali-
bration, the works relating to iCRF and SSF estimation are
further reviewed. The iCRF can be solved parametrically
with some prior models. Gamma function [27] is supposed
to lack enough freedom to fit the shape of iCRF, while
a fifth-order polynomial function [28] and a PCA based

model [29] have a good balance between accuracy and flex-
ibility in iCRF estimation. Given a set of images taken with
different exposures, a self-calibration algorithm is proposed
in [30] to recover the iCRF along with the exposure ratios.
By exploring the invariant low-rank structure within these
images, iCRF is solved in [28] using a rank minimization
approach. As for single image, the work [31] estimates iCRF
by linearizing the distributions of measured colors in edge
regions. The work [32] directly samples iCRF using tem-
poral color mixtures. The accuracy of iCRF estimation can
be considerably improved in our work by using additional
multispectral images.

The SSF describes the degradation of spectral information
in color images. It can be measured with a monochromator
and a spectrophotometer in laboratory [33], or be solved with
observed data for convenience. Proper constraints can be used
to reduce the feasible solution space of SSF. For example,
the curve characteristics of SSF like smoothness or non-
negativity can impose shape constraints. The rank orders of
RGB image values can impose half-space constraints [34].
Following this strategy, SSF can be solved using standard
color checker image through linear regression with unknown
illuminations [35]. Using the chromaticity invariance of
fluorescence, the work [36] estimates SSF under an arbi-
trary illumination. By cross-calibration methods proposed
in [8] and [37], SSF is solved with the assistance of multi-
spectral image.

III. PROPOSED MULTISPECTRAL IMAGE

SUPER-RESOLUTION ALGORITHM

In this section, we first introduce the flowchart of the
SRIF algorithm and the mathematical model of image degrada-
tion. Then we provide the solutions to iCRF and SSF coupled
in RGB image. Finally, we present the reconstruction process
for HR multispectral image with wTV regularization.

In this work, we suppose the LR multispectral image ˜Y is
of dimension m × n × L, where m × n denotes the spatial
resolution and L denotes the number of spectral bands. The
HR RGB image ˜Z ∈ R

M×N×3 is of spatial resolution M × N .
Denoting the scale factor of resolution improvement with d ,
the spatial dimensions are related by M = m × d and
N = n × d . The objective of this work is to compute the
HR multispectral image ˜X ∈ R

M×N×L by fusing ˜Y and ˜Z.

A. Flowchart

Fig. 2 shows the flowchart of our SRIF algorithm. An LR
multispectral image ˜Y and an HR RGB image ˜Z are required
at first. The radiometric calibration is then performed to solve
iCRF g(·) and SSF R according to Algorithm 1. During
image reconstruction, the edge weight matrices Wx and Wy

are computed from the linearized RGB image Z, which are
used in wTV to preserve edge structure. Then the basis �

of subspace is generated by applying PCA to ˜Y, and the
corresponding coefficient matrix C for all pixels is computed
using Algorithm 2. The full HR multispectral image cube ˜X
is finally obtained by combining the basis � and coefficient
matrix C.
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Fig. 2. Flowchart of our SRIF algorithm. Algorithm 1 computes the SSF R and iCRF g(·). The linearized RGB image Z is used to compute edge weight
matrices Wx and Wy . Low-dimensional space basis � is extracted from image Y. Algorithm 2 computes the coefficient matrix C and reconstructs the
HR multispectral image.

B. Observation Model

By indexing pixels in lexicographic order, the LR multi-
spectral image cube ˜Y is represented by matrix Y ∈ R

L×mn .
The row vectors of Y are actually the vectorized band images.
Similarly, the acquired HR color image cube ˜Z is represented
by matrix Z ∈ R

3×M N . Let X ∈ R
L×M N be the target

HR image matrix, the spatial degradation model with respect
to Y can be constructed as

Y = XBS, (1)

where matrix B ∈ R
M N×M N is a spatial blurring matrix

under circular boundary conditions. It denotes the PSF
of multispectral sensor in the spatial domain of X. The
PSF can be modeled by Gaussian kernel [4], [8], [9]. Matrix
S ∈ R

M N×mn is a decimation matrix, which accounts for a
uniform downsampling of image with scale factor d .

The spectral degradation model with respect to Z can be
formulated as

Z = f (RX). (2)

where matrix R ∈ R
3×L denotes the SSF and holds in

its rows the spectral sensitivities of RGB camera. Function
f (·) : R(0, 1) → R(0, 1) represents the CRF. To obtain
the relationship between the linearized RGB image Z and
multispectral image X, model (2) is converted to

Z := g(Z) = RX, (3)

where g(·) := f −1(·) denotes the iCRF, which is monotonous
and continuous.

C. Computing iCRF and SSF

By combing (1) and (3) with simple operation, we have

RY = g(Z)BS. (4)

The embedded variables iCRF g(·) and SSF R can be solved
alternatively by fitting this model to the acquired image data.
As will be detailed in Section IV-A, the initial estimate
of iCRF g0(·) can be quite accurate. This guarantees that the
following computation of iCRF and SSF in each iteration is
reasonable.

Algorithm 1 Computing iCRF g(·) and SSF R

Given a fixed g(·), R can be solved as

R = arg min
R

‖RY − g(Z)BS‖2
F s.t.

∥

∥

∥∇2R
∥

∥

∥

2

F
< λ, (5)

where ‖ . ‖F denotes the element-wise Frobenius norm,
∇2 denotes the second order derivative operator. The constant
λ controls the smoothness of the estimated iCRF. It is set
to 0.5 in this work. We note that the computation in (5) is
similar to the HySure algorithm [8] except that HySure adopts
a first order derivative constraint.

Given a fixed R, g(·) can be solved as

g = arg min
g

‖g(Z)BS − RY‖2
F s.t. ∇g > 0, g ∈ R(�),

(6)

where ∇ denotes the first order derivative operator and ∇g > 0
guarantees the monotonicity of g(·). R(�) denotes the linear
vector space with respect to basis � ∈ R

100×K� . The basis
� is obtained by applying PCA to the iCRF curves in
DoRF [29], with each curve sampled at 100 points. In this
work, the number K� of basis vectors is set to 9, and
problem (6) is solved by the nonlinear programming opera-
tor fmincon in MATLAB�. Note that the solution g is in
the form of column vector with its elements sampled from
the corresponding curve, and the mapping effect of g(·) is
achieved by the one-dimensional interpolation operation.

To summary, Algorithm 1 lists the computation of g(·)
and R based on the discussion above. It is observed that the
model (4) can fit the acquired data well after a few number
(e.g., 5) of iterations.
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D. Edge-Preserving Regularizer

It is essential to preserve the image edges during the
super-resolution procedure. In this work, we introduce
an edge-preserving regularizer, which is in the form of
wTV, to incorporate the edge structure information of the
RGB image into the reconstructed multispectral image. It is
based on the reasonable assumption that the edge structure in
RGB image is in good condition.

The wTV regularizer has been used for reconstructing three-
dimensional medical images [38], where the weighting effect
at each pixel location is isotopic. Considering that in most
cases the horizontal and vertical components of image gradient
are different, we employ a novel anisotropic weighting scheme
and modify the edge-preserving wTV regularizer as

wTV(XDx , XDy) = ‖Wx � (XDx)‖1 + ∥

∥Wy � (XDy)
∥

∥

1

=
L

∑

i=1

M N
∑

j=1

wx
j |(XDx)i j | + w

y
j |(XDy)i j |,

(7)

where | · |, �, and ‖·‖1 denote the absolute operation,
Hadamard product, and element-wise �1 norm, respectively.
Symbol (·)i j denotes the element in the i th row and
j th column of a matrix. Matrices Dx and Dy ∈ R

M N×M N

represent the first-order horizontal and vertical gradient matri-
ces under circular boundary conditions. Matrices Wx and Wy

are the horizontal and vertical weighting matrices consisting of
spatially varying edge-aware weights wx

j and w
y
j , respectively.

It is known that for natural images the distribution of gradi-
ents can be approximately modeled as Laplacian with zero
mean [39], [40]. Motivated by this, we define the weights as

wx
j = exp

(

−|f(ZDx )| j

bx

)

, w
y
j = exp

(

−|f(ZDy)| j

by

)

, (8)

where f(·) represents the grayscale conversion function that
integrates image gradient information across the visible spec-
trum. Scale parameters bx and by are estimated by the mean
absolute value of the corresponding gradient components at
every pixel location [41]. Through the regulating effect of
wx

j and w
y
j , the noise of the reconstructed image will be

suppressed in flat area indexed by the edge structure of
RGB image, and the real edges will be preserved.

It is of our interest to compare the effect of weights defined
in (8) and the weight in [38] which is of the form

w j = η
√

(|f(ZDx )| j + |f(ZDy)| j
)2 + η2

. (9)

The parameter η controls the extent that an edge can be
considered as a structure. A limitation of this definition is
that, even when the constant η is fine tuned, it still cannot
cope with different image scenes. In comparison, the weights
definition (8) describes the edge structure by a statistical model
and does not involve any manual-setting parameters.

Fig. 3 demonstrates the effect of edge structure preservation
by the R-FUSE [9] algorithm and our SRIF algorithm with
the wTV in [38] and our wTV. Here we set η = 0.01 in (9)
that is appropriate for common RGB images. It is observed

Fig. 3. Demonstration of edge structure preserving effect by our SRIF
algorithm. From left to right: two HR RGB image regions and their edge
structures, real acquired band images at band 420 nm, reconstructed band
images using R-FUSE [9], reconstructed band images using SRIF with the
wTV from [38], reconstructed band images using SRIF with our wTV. The
spatial resolution is improved by 16×.

that the R-FUSE [9] algorithm, which is based on dictionary
learning and sparse representation, fails to recover entire edge
structures because of serious image noise. Our SRIF algorithm
with the wTV in [38] recovers the edge well when using a
bright RGB image, but fails to maintain this edge preserving
effect when the RGB image is dark. In comparison, our
SRIF algorithm using the novel wTV keeps the edge structures
well for both bright and dark scenes.

E. Super-Resolution Reconstruction

With the above treatment, the super-resolution reconstruc-
tion can be formulated as an optimization problem

X = arg min
X

1

2
‖Y − XBS‖2

F + β

2

∥

∥Z − RX
∥

∥

2
F

+γ wTV(XDx , XDy), (10)

where β and λ are weighting and regularization parameters,
respectively. We note this formulation is common in the field
of hyperspectral image super-resolution [4], [8]. Our special
treatments are the RGB linearization by CRF estimation
and the novel wTV form for edge preservation in image
reconstruction.

As color spectrum is intrinsically of low dimension, the HR
multispectral matrix X is solved in a subspace with dimension
less than L. This treatment can improve both computation
efficiency and solution stability. The space basis � ∈ R

L×K�

(K� ≤ L), is obtained beforehand by applying PCA on the
LR multispectral matrix Y. Then problem (10) is converted to
solving the corresponding coefficient matrix C ∈ R

K�×M N as

C = arg min
C

1

2
‖Y − �C BS‖2

F + β

2

∥

∥Z − R�C
∥

∥

2
F

+ γ wTV(�CDx ,�CDy). (11)
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Considering that the wTV regularizer (7) is nonquadratic
and nonsmooth, the ADMM algorithm [5] is employed to
solve the problem (11) through the variable splitting technique.
By introducing 3 auxiliary variables, the original optimization
problem becomes

min
V1,V2,V3C

1

2
‖Y − �CBS‖2

F + β

2

∥

∥Z − R�V1
∥

∥

2
F

+ γ wTV(V2, V3)

s.t. V1 = C, V2 = �CDx , V3 = �CDy . (12)

The auxiliary variable V1 helps avoid singularity, and the
auxiliary variables V2 and V3 help generate closed-form
solutions associated with the regularizer. The problem (12)
has the following augmented Lagrangian

min Lρ(C, V1, V2, V3, A1, A2, A3)

= 1

2
‖Y − �CBS‖2

F + β

2

∥

∥Z − R�V1
∥

∥

2
F

+ γ wTV(V2, V3) + ρ

2
‖C − V1 − A1‖2

F

+ ρ

2
‖�CDx − V2 − A2‖2

F + ρ

2

∥

∥�CDy − V3 − A3
∥

∥

2
F ,

(13)

where matrices A1, A2, and A3 represent three scaled dual
variables, and ρ denotes the penalty parameter.

The variables in (13) are solved through iteration. The
subproblem of coefficient matrix C can be minimized in
frequency domain, which uses the properties of convolution
and decimation matrices. This implementation will be detailed
in Section IV-B.

The auxiliary variable V1 is associated with an uncon-
strained least squares problem and has the closed-form solu-
tion

V j+1
1 = (β(R�)T(R�) + ρI)−1(β(R�)TZ

+ ρ(C j+1 − A j
1)), (14)

where (·)T represents matrix transpose and I represents the
unit matrix with proper dimensions.

By using soft shrinkage operator, the minimization problems
involving V2 and V3 have the analytical solutions

V j+1
2 = sgn(�C j+1Dx − A j

2) � max{|�C j+1Dx − A j
2|

− γ

ρ
Wx , 0} (15)

V j+1
3 = sgn(�C j+1Dy − A j

3) � max{|�C j+1Dy − A j
3|

− γ

ρ
Wy, 0}. (16)

where sgn(·) and max{·, ·} denote sign and maximum func-
tions, respectively.

Then the scaled dual variables are updated by

A j+1
1 = A j

1 − (C j+1 − V j+1
1 ),

A j+1
2 = A j

2 − (�C j+1Dx − V j+1
2 ),

A j+1
3 = A j

3 − (�C j+1Dy − V j+1
3 ). (17)

At the end of iteration, the target HR image X is recovered
by combing basis � and the corresponding coefficient C.

Algorithm 2 Reconstruct X Using ADMM

Our study reveals that 20 iterations are sufficient to obtain
a satisfactory HR image. Algorithm 2 lists the procedure of
this reconstruction.

Compared with Hysure [8], Algorithm 2 introduces different
auxiliary variables to generate closed-form solutions with
numerical stability. Also, Algorithm 2 handles the subproblem
associated with coefficient matrix in a different way.

IV. ALGORITHM IMPLEMENTATION DETAILS

In this section, we introduce the algorithm implementation
details including the estimation of initial iCRF g0(·) and the
efficient solution of coefficient C.

A. Estimating Initial iCRF

There is an intrinsic linear relationship among the pixels
in multispectral image. However, it is destroyed in the RGB
image rendered by nonlinear CRF. The estimation of initial
iCRF can be treated as a process of recovering this intrinsic
linear relationship from the rendered RGB image.

The intrinsic linear relationship reveals that each pixel
spectrum yi ∈ R

L in Y can be composed by a collection
of intrinsic basis spectra � ∈ R

L×K
 and the corresponding
coefficient vector ξ i ∈ R

K
 as

yi = �ξ i . (18)

Each intrinsic spectrum φ
y
k ∈ R

L in � is extracted from Y at
location I(k), i.e., φ

y
k = Y:,I(k). The selection of intrinsic

spectra is carried out in a iterative manner. An intrinsic
spectrum to be selected should be as different as possible from
those already selected. The number K
 of intrinsic spectra
should be larger than L, and is set to 70 in this work. The
coefficient vector ξ i is solved as

ξ i = arg min
ξ i

∥

∥ξ i

∥

∥

1 s.t.
∥

∥yi − �ξ i

∥

∥

2
F < ε, (19)

where the element-wise �1 norm promotes the sparsity of ξ i .
The constant ε denotes the representation tolerance, and is set
to 10−5 in this work.

Concatenating (18) for all pixel spectra leads to a self-
representation of Y,

Y = YN, (20)
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where the sparse matrix N is only constituted by the elements
of coefficient vectors, i.e., (N)I(k),i = (ξ i )k . With this treat-
ment, the linear relationship existing in Z can be derived by
combining (4) and (20), i.e., g(Z)BS = g(Z)BSN. Based on
this equation, the initial CRF g0(·) can be estimated without
knowing SSF,

g0 = arg min
g0

‖g0(Z)BS − g0(Z)BSN‖p

‖g0(Z)BS + g0(Z)BSN‖p
,

s.t. ∇g0 > 0, g0 ∈ R(�). (21)

where ‖ . ‖p denotes the element-wise p-norm. Our analysis
indicates that the estimates of g0 are close when using p = 1
or p = 2. In this work we let p = 1 considering that
potentially the solution g0 is insensitive to large errors when
adopting the �1 norm. The denominator in (21) empirically
prevents g0(·) from being a zero function.

B. Solving Coefficient Matrix

Although a fast analytical solution of coefficient matrix C
can be derived in terms of solving a Sylvester function [22],
this work further reduces the amount of computation by
rearranging the subproblem as

C j+1 = arg min
C

̂Lρ(C)

= arg min
C

1

2

∥

∥̂Y − CBS
∥

∥

2
F + ρ

2

∥

∥

∥C − V j
1 − A j

1

∥

∥

∥

2

F

+ ρ

2

∥

∥

∥CDx −̂V j
2 − ̂A j

2

∥

∥

∥

2

F
+ ρ

2

∥

∥

∥CDy − ̂V j
3 − ̂A j

3

∥

∥

∥

2

F
,

(22)

where ̂Y represents the projection coefficients of Y on the sub-
space R(�), i.e., ̂Y = (�T�)−1�TY, and matrices ̂V2, ̂V3,
̂A2 and ̂A3 are obtained in the same way. This rearrangement
is based on the assumption that little loss of information is
incurred during the projection.

Setting the derivative ∇C ̂Lρ(C) = 0 leads to the matrix
equation

CBSSHBH + ρCDxDH
x + ρCDyDH

y + ρC

= ̂YSHBH + ρ(V j
1 + A j

1) + ρ(̂V j
2 + ̂A j

2)D
H
x

+ ρ(̂V j
3 + ̂A j

3)D
H
y , (23)

where (·)H denotes conjugate transpose. Convolution matri-
ces B, Dx and Dy can be diagonalized by Fourier matrix
F ∈ R

M N×M N [42], i.e., B = F�BFH, Dx = F�x FH and
Dy = F�yFH. With this treatment, (23) is consolidated as

C j+1 = QK−1FH, (24)

where

Q = ̂YSHF�H
B + ρ(V j

1 + A j
1)F + ρ(V j

2 + A j
2)F�H

x

+ ρ(V j
3 + A j

3)F�H
y , (25)

K−1 =
(

�BFHSSHF�H
B + ρ�2

x + ρ�2
y + ρI

)−1
. (26)

Matrix Q in (25) can be fast solved just through upsampling,
fast Fourier transform (FFT) and element-wise multiplication

operations. As the inverse of large-scale matrix in (26) is
difficult, K is simplified as

K = 1

d2 �BPPH�H
B + �K , (27)

where the diagonal matrices in (26) are combined into
�K = ρ�2

x + ρ�2
y + ρI, and the property of downsampling

matrix S, i.e.,

FHSSHF = PPH/d2, (28)

is utilized (see Appendix for proof). P ∈ R
M N×mn is a

transform matrix with 0 and 1 elements. Right multiplying P
and PH can be achieved by performing sub-block accumulating
and image copying operations to the corresponding image.
Using the Woodbury inversion lemma [21], the inverse of (27)
can be computed as

K−1 = �−1
K − �−1

K �BP
(

d2I + PH�H
B�−1

K �BP
)−1

× PH�H
B�−1

K , (29)

where matrix PH�H
B�−1

K �BP is diagonal.
Inserting (29) into (24) yields the final solution

C j+1 = Q�−1
K FH−Q�−1

K �BP
(

d2I+PH�H
B�−1

K �BP
)−1

× PH�H
B�−1

K FH. (30)

Note that this solution procedure only contains FFT, element-
wise multiplication, sub-block accumulating, and image copy-
ing operations.

V. EXPERIMENTS

In the experiments, we evaluate the SRIF algorithm on
both public datasets (Harvard [43], CAVE [44], and Pavia
University [45]) and our acquired LR multispectral images.

The Harvard1 dataset [43] has 77 multispectral images of
indoor and outdoor scenes. The CAVE2 dataset [44] contains
32 multispectral images of everyday objects. The images in
these two datasets have 31 bands within the visible spectrum
400-720 nm,3 which serve as ground truth to generate LR
spectral images and HR RGB images. The Pavia University4

dataset [45] contains a remotely sensed hyperspectral image
consisting of 103 bands ranging from 430 nm to 860 nm. It is
used for the extended experiment of fusing a LR hyperspectral
image with an HR multispectral image.

The LR spectral images are generated by applying Gaussian
blur and downsampling operations to the images in datasets.
The size and standard deviation of Gaussian blur kernel are set
to (3d+1)×(3d+1) and 3d/4 empirically with respect to scale
factor d = 4, 8, and 16, which makes the downsampled images
clear and free of sawtooth artifacts. The HR RGB images are
obtained from Harvard and CAVE datasets using the SSFs
and CRFs provided in the CamSpec database [35] and DoRF
database [29]. The 4-band HR multispectral image is obtained

1http://vision.seas.harvard.edu/hyperspec/download.html.
2http://www1.cs.columbia.edu/CAVE/databases/multispectral/.
3The spectrum is 420-720 nm in the Harvard dataset and 400-700 nm in

the CAVE dataset.
4http://www.ehu.eus/ccwintco/uploads/e/ee/PaviaU.mat.
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Fig. 4. Example images (displayed in RGB) used in the experiments. The
4 images in the first row are from the Harvard dataset, the 4 images in
the middle row are from the CAVE and Pavia University datasets, and the
4 images in the last row are acquired in our laboratory.

by filtering Pavia University dataset with the LANDSAT-like
spectral reflectance response [22].

In our real image dataset, the LR multispectral images
with 31 bands are acquired by an imaging system consisting
of a liquid crystal tunable filters (LCTF) and a CoolSnap
monochrome camera. The HR RGB images are captured using
a Canon 70D camera. The acquired multispectral and RGB
images are aligned according to [46]. Fig. 4 shows 12 typical
image samples (displayed in RGB) mentioned above.

Five objective quality metrics are used to evaluate the qual-
ity of reconstructed multispectral images, i.e., cross correlation
(CC) [47], spectral angle mapper (SAM) [47], root mean
squared error (RMSE) [47], relative dimensionless global error
in synthesis (ERGAS) [47], and peak signal to noise ration
(PSNR) [10]. The CC and SAM metrics measure the spatial
quality and spectral quality respectively. The RMSE, ERGAS,
and PSNR metrics measure the global quality.

In the following we discuss some issues on the SRIF algo-
rithm, including parameter setting and the effect of reconstruc-
tion terms in (10). We also verify the reliability of iCRF and
SSF estimation using simulation. Throughout the experiments,
we compare the reconstruction accuracy of SRIF with those
of six state-of-the-art ones, namely, SNNMF [7], HySure [8],
R-FUSE [9], NSSR [4], CO-CNMF [10], and CSTF [11],
whose source codes are publicly available online.5,6,7,8,9,10

Finally we analyze the computational complexity of our
algorithm.

A. Algorithm Settings
We evaluate the effect of three key parameters (weight-

ing parameter β, regularization parameter γ , and penalty
parameter ρ) on the reconstruction accuracy of SRIF.

5http://www.csse.uwa.edu.au/~ajmal/code/HSISuperRes.zip.
6https://github.com/alfaiate/HySure.
7https://github.com/qw245/BlindFuse.
8http://see.xidian.edu.cn/faculty/wsdong/Code_release/NSSR_HSI_SR.rar.
9http://www1.ee.nthu.edu.tw/cychi/sourcecode/CO-CNMF_demo.rar.
10https://sites.google.com/view/renweidian.

TABLE II

AVERAGE RMSE/SAM VALUES PRODUCED BY THE FULL OPTIMIZATION
MODEL (10), AND THE MODEL WITHOUT ICRF (NONLINEAR)
ESTIMATION OR WITHOUT USING EDGE-AWARE WEIGHTING

IN WTV REGULARIZATION. THE QUANTITIES ARE

COMPUTED ON ALL THE IMAGES IN HARVARD
AND CAVE DATASETS WITH 16×

RESOLUTION IMPROVEMENT

Fig. 5 plots the average RMSE values of all the recon-
structed images in the Harvard and CAVE datasets with respect
to these parameters. Parameter β is the weight of RGB data
term in (10). We can see from Fig. 5(a) that the RMSE for
both datasets drops when log10β varies from -2 to 1, and keeps
relatively stable when log10β varies from 1 to 4. A larger β
may overemphasize the importance of RGB data term. Based
on this observation, β is set to 10 in this work.

Parameter γ regularizes the degree of edge preservation.
A larger value of γ will increase the role of RGB edge guid-
ance. However, if γ goes too large, the reconstructed edges
will be over smoothed. As shown in Fig. 5 (b), the RMSE
stays low for both datasets when log10γ ∈ [−10,−8]. Hence
we set γ = 10−8 in this work.

Parameter ρ penalizes the equality constraint residuals
in (13). Fig. 5(c) shows that the RMSE for Harvard dataset
reaches a minimum as log10ρ = −4 after finite reconstruction
iterations. This value is also appropriate for the CAVE dataset.
For this reason we set ρ = 10−4.

We also evaluate the effects of iCRF estimation and wTV
regularization respectively on the reconstruction accuracy
of SRIF. Table II shows that the RMSE and SAM values
become very large when not considering the iCRF estimation
(i.e., assuming a linear iCRF). The accuracy of SRIF also
degrades if not incorporating the edge-aware weighting in the
wTV regularization. These observations validate the necessity
of the related terms in the optimization model (10).

B. Accuracy of iCRF and SSF

Fig. 6(a) shows the RMSE values of 201 initial iCRFs
obtained using our algorithm and the single-image based
technique introduced in [31]. Thanks to the employment of
multispectral image, the RMSE values of our algorithm are
much lower than those of [31]. Fig. 6(b) demonstrates 4 initial
iCRF curves estimated by the our algorithm. It is observed that
the first 2 estimates (Nos. 15 and 72) with RMSE 0.0019 and
0.0016 are close to ground truths. The third estimate (No. 128),
which corresponds to the maximum RMSE 0.031, only slightly
deviates from ground truth. The last estimate (No. 156) is
linear and its RMSE error is 0.0062. In general, our algorithm
can provide satisfactory initial iCRFs.

An accurate initial iCRF benefits the estimation of iCRF
and SSF. Fig. 7 shows the initial iCRFs and final iCRFs,
as well as the estimated SSFs of the red, green, and blue



PAN AND SHEN: MULTISPECTRAL IMAGE SUPER-RESOLUTION VIA RGB IMAGE FUSION 1791

Fig. 5. The average RMSE values of all the reconstructed images in the Harvard and CAVE datasets with respect to parameters (a) log10β, (b) log10γ , and
(c) log10ρ.

Fig. 6. Estimated initial iCRFs from Scene1. (a) RMSE values of 201 iCRFs
from DoRF database produced by our algorithm and the technique [31]. Their
mean RMSE values are 0.0059 and 0.1004, respectively. (b) Our 4 estimated
iCRFs whose sample nos. are indicated in (a).

TABLE III

SAM AND PSNR VALUES OF RECONSTRUCTED HR MULTISPECTRAL

IMAGES WHEN USING THE INITIAL ICRFS PRODUCED BY OUR
ALGORITHM AND THE TECHNIQUE IN [31]. THE QUANTITIES

ARE COMPUTED ON Scene1 WITH 16×
RESOLUTION IMPROVEMENT

channels. The RGB images are rendered using the SSF of
Canon 60D camera. It is observed that the estimates of iCRF
and SSF are quite close to ground truths.

It should be noted the accurate estimation of iCRF is essen-
tial to the ultimate HR image reconstruction. Table III shows
that, when compared with the iCRF estimation technique [31],
the super-resolution algorithms adopting our iCRF estimation
algorithm produce lower SAM distortion and higher PSNR
values. Hence, our iCRF estimation algorithm will be used for

Fig. 7. Initial and final iCRFs, and estimated SSFs of the red, green, and
blue channels.

both the SRIF algorithm and the competitors in the following
experiments if not otherwise noted.

C. Image Reconstruction on Public Datasets

The HR multispectral images are reconstructed after the
iCRF and SSF have been obtained. To fairly compare the
reconstruction performance, all the super-resolution algorithms
use the same and correct radiometric calibration. Fig. 8 shows
the PSNR values at individual spectral bands of Scene2
when the spatial resolution is improved with scale factor
d = 4, 8, and 16. It is observed that our SRIF algorithm
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TABLE IV

AVERAGE CC, SAM, RMSE, ERGAS, AND PSNR VALUES PRODUCED BY DIFFERENT ALGORITHMS ON
THREE DATASETS. THE RESOLUTION IS IMPROVED WITH SCALE FACTORS d = 8 AND 16

Fig. 8. PSNR values of individual spectral bands on Scene2 when
d = 4, 8, and 16.

produces the highest PSNR values in most cases when com-
pared with the competing ones, and also produces relatively
stable PSNR curves when the scale factor varies.

In the following, the resolution scale factor is set as d = 16
if not otherwise noted. Fig. 9(a) presents the fusion results
of Scene3 using different algorithms. The first row shows
parts of the reconstructed band images at wavelength 580 nm.
The second and third rows further show the corresponding

RMSE and SAM maps computed from the spectra of all
pixels. The average RMSE and SAM values are also shown
with the corresponding images. The RMSE maps reveal that
the images reconstructed by SNNMF [7] and R-FUSE [9]
exhibit large spatial errors, while the SAM maps reveal that the
spectral details are not well handled in the results produced by
SNNMF [7] and HySure [8]. The CSTF algorithm [11] pro-
duces better image reconstruction, but still fails to recover
the scene in the bottom area. In comparison, the HR images
produced by the SRIF algorithm are of highest accuracy.

Fig. 9(b) shows the reconstruction results of the remotely
sensed hyperspectral image Pavia University at the near-
infrared wavelength 860 nm. It is observed that the
CO-CNMF [10] and CSTF [11] algorithms are not good at
handling this hyperspectral image, while the SNNMF [7] and
HySure [8] algorithms perform relatively better. In compari-
son, our SRIF algorithm produces lowest spatial and spectral
errors. This indicates that SRIF is capable of fusing remote-
sensing LR hyperspectral image and HR multispectral image.

Table IV shows the average CC, SAM, RMSE, ERGAS, and
PSNR values of all the reconstructed multispectral (or hyper-
spectral) images in the Harvard, CAVE, and Pavia University
datasets. It is observed that our SRIF algorithm outperforms
all the competitors when evaluated using these metrics. More
specifically, Fig. 10(a) and Fig. 10(b) show the overall RMSE
and SAM results on the 109 multispectral images in the CAVE
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Fig. 9. Reconstruction results of (a) Scene3 and (b) Pavia University with 16× spatial resolution improvement. The 1st and 4th rows show parts of the
reconstructed band images of Scene3 at 580 nm and parts of the reconstructed band images of Pavia University at 860 nm using different algorithms. Their
LR images and ground truth images are listed on the right. The remaining rows illustrate the corresponding RMSE maps and SAM maps calculated across
all the spectral bands.

and Harvard datasets. For clear demonstration, the image
indexes are sorted in ascending order with respect to the
metric values produced by the SRIF algorithm. It is observed
that the RMSE and SAM values of SRIF are always of the
lowest magnitude for individual images. This verifies that our
algorithm performs better than the other six ones in terms of
both spatial and spectral metrics.

We further evaluate the performance of the SRIF algorithm
in case of noise corruption. In the experiment, two types of
image noise are added to the LR multispectral image of the
Oil Painting scene. The corresponding HR RGB image is kept
clear as practically it is easy to guarantee enough exposure
time during its imaging process. We first adopt the independent
identically distributed (i.i.d) Gaussian noise to degrade the
spectral images with the signal-to-noise ratio (SNR) of 20 dB
and 25 dB, respectively. In this case, every pixel shares the
same noise level. We also corrupt the spectral images with
realistic signal-dependent noise. This noise model is derived
from the assumption that the number of detected photons
at each pixel location p ∈ Z

2 follows Poisson distribution.
The sensor noise can be approximated by additive Gaussian
noise with signal-dependent variance, which is linear to pixel

TABLE V

RMSE/SAM RESULTS OF NOISY CASES. THE QUANTITIES ARE
COMPUTED ON Oil Painting WITH 8× RESOLUTION IMPROVEMENT

intensity as σ 2(p) = aI(p)+b [48]. To generate spectral band
images with different signal-dependent noise levels, we first
scale the pixel intensity of Oil Painting such that the mean
intensities of the resultant images are 0.3× and 1× as the
mean intensity of the original image, and then add the noise
by setting the linear coefficients a = 0.04 and b = 0.13
estimated in [48]. Due to the property of signal-dependent
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Fig. 10. RMSE (a) and SAM (b) values produced by different algorithms on all the images in the CAVE and Harvard datasets. The image indexes are sorted
in ascending order with respect to the metric values produced by the SRIF algorithm to facilitate visual comparison.

Fig. 11. Reconstruction results on real data. The intensities of the marked pixels are shown on the images. (a) Books at band 690 nm, (b) Butterfly at
band 460 nm.

TABLE VI

PER-ITERATION AND TOTAL RUNNING TIMES (IN SECONDS) OF DIFFERENT ALGORITHMS FOR RECONSTRUCTING AN HR MULTISPECTRAL IMAGE WITH
L = 31 BANDS AND 1392 × 1040 SPATIAL RESOLUTION. THE NUMBER OF ITERATIONS OF EACH ALGORITHM IS GIVEN IN THE PARENTHESES

noise, the higher image intensities will result in relatively
better image quality. Table V lists the RMSE and SAM values
of the HR multispectral images reconstructed from the noisy
LR images. It is observed that when adding the i.i.d noise,
our SRIF algorithm produces lowest RMSE and SAM values.
Meanwhile, we observe that R-FUSE [9], which is based
on sparse representation, produces the lowest SAM value
when dealing with large signal-dependent noise. However,
its RMSE value is slightly unsatisfactory. Overall, our SRIF
algorithm still outperforms other algorithms when considering
both spatial and spectral reconstruction accuracy.

D. Image Reconstruction on Our Real Images

We also evaluate the SRIF algorithm on real images
acquired in our laboratory. Fig. 11 shows the original LR band
images of Books at 690 nm and Butterfly at 460 nm, as well
as the corresponding reconstructed results with 8× spatial
resolution improvement. For a clear comparison, two pixels

locating in smooth regions are marked and their corresponding
intensities are shown. It is desired that the intensities of the
marked pixels in the reconstructed HR images should be close
to those in the original LR images. We observe from Fig. 11(a)
that the shapes of English alphabets in the images produced
by SNNMF, HySure, NSSR, and CO-CNMF are not clear and
the intensity of Chinese characters produced by R-FUSE is
too high. The image produced by CSTF exhibits undesired
ring effect. Fig. 11(b) shows that the intensities of butterfly
wings produced by the competing algorithms are relatively
low. In comparison, our SRIF algorithm performs well in
handling these details in both Fig. 11(a) and Fig. 11(b).

E. Complexity Analysis

Algorithm 1 solves the iCRF and SSF alternatively. In each
iteration of minimizing (5) or (6), the most computationally
intensive step is the multiplication of matrices B and g(Z).
Its complexity is O(M N log(M N)). Algorithm 2 reconstructs
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TABLE VII

RMSE VALUES WITH RESPECT TO THE NUMBER OF ITERATIONS.
THE QUANTITIES ARE COMPUTED ON Pavia University

WITH 8× RESOLUTION IMPROVEMENT

the HR multispectral image by solving several subproblems.
The computational complexity of the prime variable C in
frequency domain is of order O(L M N log(M N)). The com-
putational complexity of the auxiliary variable V1 is of order
O(K� M N). The computational complexities of the auxiliary
variables V2 and V3 are both of order O(L K� M N), where the
computation associated with gradient matrices can be achieved
by subtracting the adjacent image rows or columns. In addi-
tion, an order of O(K� M N) is required in the computation
of dual variable A1. An order of O(L M N) is required in the
following computation of dual variables A2 and A3. Thus
the complexity of Algorithm 2 is dominated by the FFTs
and is of order O(L M N log(M N)) per iteration. We note
that the HySure algorithm [8] has nearly the same compu-
tational complexity. However, HySure uses more auxiliary
variables in ADMM, which increases the computation burden
accordingly.

All the competing algorithms are implemented using
MATLAB� and run on a personal computer with 2.60 GHz
CPU (Intel Xeon E5-2630) and 64 GB RAM. The competing
algorithms adopt their corresponding default iteration numbers
in the computation. Table VI shows the per-iteration running
times and total running times of these algorithms for recon-
structing an HR multispectral image with L = 31 spectral
bands and 1392 × 1040 spatial resolution. It is observed that
our SRIF algorithm costs the least time in each iteration and
also gains improvement in total computational efficiency when
compared with the state-of-the-arts.

Table VII further lists the RMSE results with respect to the
number of iterations on reconstructing the Pavia University
image with 8× resolution improvement. It is observed that
our SRIF algorithm always produces the lowest RMSE values
when the number of iterations is larger than 20.

VI. CONCLUSIONS

This paper has introduced a multispectral image super-
resolution algorithm, referred as SRIF, to improve the spatial
resolution of multispectral image with an HR RGB image. The
iCRF and SSF are first solved from the acquired data. Then
the HR multispectral image is efficiently reconstructed, and
the wTV operator is used to keep the recovered edge struc-
ture in accordance to the one of RGB image. Experimental
results validate that our algorithm performs better than the

state-of-the-arts in terms of both reconstruction accuracy and
computational efficiency.

APPENDIX

PROOF OF (28)

Proof: The properties of Fourier transform matrix F and
downsampling matrix S are first introduced. Matrix F can be
decomposed as

F = DN ⊗ DM ,

where DN ∈ R
N×N and DM ∈ R

M×M are one-dimensional
discrete Fourier transform matrices, and ⊗ denotes Kro-
necker product. Right multiplying an image by SSH can be
achieved through performing element-wise multiplication with
a mask matrix, which has ones in the sampled position and
zeros elsewhere. With this treatment, SSH can be expressed
as

SSH = (

IN/d ⊗ Td
) ⊗ (

IM/d ⊗ Td
)

,

where IN/d and IM/d are identity matrices with dimensions
N/d and M/d , respectively, and matrix Td ∈ R

d×d has the
form

Td =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 ... 0
0 0 ... 0
. . . .
. . . .
0 0 ... 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Then Equation (28) can be proved as

FHSSHF

= DH
N ⊗ DH

M

(

IN/d ⊗ Td
) ⊗ (

IM/d ⊗ Td
)

DN ⊗ DM

=
(

DH
N

(

IN/d ⊗ Td
)

DN

)

⊗
(

DH
M

(

IM/d ⊗ Td
)

DM

)

=
(

1

d
Jd×d ⊗ IN/d

)

⊗
(

1

d
Jd×d ⊗ IM/d

)

= 1

d2

(

JdJH
d

)

⊗
(

IN/d IH
N/d

)

⊗
(

JdJH
d

)

⊗
(

IM/d IH
M/d

)

= 1

d2

(

Jd ⊗ IN/d ⊗ Jd ⊗ IM/d
)

(

JH
d ⊗ IH

N/d ⊗ JH
d ⊗ IH

M/d

)

= 1

d2 PPH,

where the third equation holds according to the Lemma 3
in [22]. Matrix Jd×d ∈ R

d×d and vector Jd ∈ R
d have all

the elements being ones, and matrix P is defined as

P = Jd ⊗ IN/d ⊗ Jd ⊗ IM/d ,

which means that right multiplying an image by P can be
achieved through accumulating d ×d sub-blocks divided from
the origin image into one small image. The corresponding
adjoint operation, i.e., right multiplying an image by PH,
is achieved through copying the origin image d × d times
to form a large image.
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