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Normalized Total Gradient: A New Measure for
Multispectral Image Registration
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Abstract— Image registration is a fundamental issue in multi-
spectral image processing, and is challenged by two main charac-
teristics of multispectral images. First, the regional intensities can
be essentially different between band images. Second, the local
contrasts of two difference band images are inconsistent or even
reversed. Conventional measures can align images with different
regional intensity levels, but may fail in the circumstance of
severe local intensity variation. In this paper, a new measure
called normalized total gradient is proposed for multispectral
image registration. The measure is based on the key assump-
tion (observation) that the gradient of the difference between
two aligned band images is sparser than that between two
misaligned ones. A registration framework, which incorporates
image pyramid and global/local optimization, is further intro-
duced for affine transform. Experimental results validate that
the proposed method is not only effective for multispectral image
registration, but also applicable to general unimodal/multimodal
image registration tasks. It performs better than or comparable
to the existing methods, both quantitatively and qualitatively.

Index Terms— Multispectral image, multimodal image, image
registration, band image, similarity measure, image gradient,
normalized total gradient, affine transform, image pyramid,
optimization.

I. INTRODUCTION

MULTISPECTRAL color imaging has attracted intensive
interest in recent years as it can acquire more spectral

information than traditional RGB cameras. A multispectral
imaging system can be set up by using a camera and an
optical device that splits the visible spectrum reflected from
the imaged object. Typical light-splitting devices include elec-
tronically controlled tunable filters [1], [2] or mechanically
controlled filter wheels [3]. Compare with tunable filters,
the filter wheel has the flexibility in filter selection and
can achieve high spectral transmittance in the whole visible
spectrum range. Fig. 1 shows a multispectral imaging system
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that consists of a monochrome digital camera and a filter
wheel installed with a series of optical filters. The filter
wheel based multispectral imaging system usually suffers from
image misalignment and out-of-focus blur. The misalignment
between band images is caused by the non-coplanar place-
ment of filters [3], [4]. The inter-band misalignment causes
chromatic abberation (Fig. 14), and precludes the direct use of
multispectral image. Although calibration technique is avail-
able for multispectral image alignment, it requires a particular
calibration board, and in addition, the system must be re-
calibrated when the imaging distance changes. Hence, it is
more convenient and favorable to explore a calibration-free
multispectral image registration method for practical applica-
tions. On the other hand, the out-of-focus blur is caused by
the different effective focal lengths at individual bands, which
originates from the fact that the refractive indices of the lens
are wavelength dependent. To deal with this problem, an auto-
focus method [5] has been employed to compute the focus
positions of lens using a focusing device (i.e., step motor).
Alternatively, when the band images are well aligned, the blur
can also be computationally removed by multispectral image
deblurring [6]. In this work, we will show in Section VI that
multispectral images can be restored based on the proposed
registration framework and the deblurring method introduced
in [6]. In this way, neither the calibration board nor the
focusing device is further needed in such multispectral imaging
systems.

Image registration aims to find correspondences between
two images by maximizing specific similarity measure (or
equivalently, minimizing distance measure). Extensive sur-
veys of registration techniques can be found in [7] and [8].
Registration techniques can be classified into two categories
according to the descriptors that formulate the similarity
measures [8], i.e., the feature-based one and intensity-based
one. Feature-based methods usually involve feature detection,
feature matching, transform model estimation, and resampling.
Generally these methods are more efficient but less accurate
when compared to the intensity-based methods. As one of the
most successful feature-based methods, scale invariant feature
transform (SIFT) has been widely used in a variety of match-
ing tasks in computer vision [9]. Intensity-based registration
methods have been applied in medical imaging [7]. Simi-
larity measures, including sum-of-squared-differences (SSD),
cross correlation (CC), correlation ratio (CR), and mutual
information (MI), have been widely employed in either uni-
modal or multimodal image registration [10]–[13].

Multispectral image challenges the conventional intensity-
based registration methods at two aspects. First, the intensities
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Fig. 1. The multispectral imaging system (a) and filter wheel (b) used in
this work. Note that in our system totally 16 filters are installed on the wheel,
but only 8 filters are shown for illustration.

Fig. 2. Local contrast inconsistency of an aligned multispectral image.
(a) Multispectral image displayed in RGB. (b) Band image at wavelength
560 nm. (c) Band image at wavelength 700 nm. (d) Joint histogram of
intensities of image (b) and (c). Warmer color denotes larger number of counts.

of same local region in different band images can be essentially
different. Second, the local intensity may vary in some band
images while keeps constant in others, leading to inconsis-
tent or even reverse contrast. As an example, Fig. 2 illustrates
the phenomenon of contrast inconsistency. Because the spec-
tral responses of yellow face and pink regions on the face are
diverse at 560 nm but similar at 700 nm, the pink regions
are visible in the band image at 560 nm, but vanish in the
band image at 700 nm. According to [14], image registration
methods cannot deal with obvious structure inconsistency in
multispectral or multimodal images when without using an
effective similarity measure.

This paper proposes a new intensity-based method to resolve
the mentioned challenges for multispectral image registration.
The normalized total gradient (NTG), which is applied on the
difference between two band images (referred as difference
image hereafter), is introduced to measure the alignment
degree of two images. The employment of NTG is based
on the key assumption that the gradient of difference image
between two aligned images is sparser than that between
two misaligned images. This assumption is validated by the
statistical investigation on a large number of multispectral
images of real-scenes.

Based on the NTG measure, an image registration frame-
work that incorporates image pyramid and global/local opti-
mization is introduced for general affine transform, as shown
in Fig. 3(a). During the optimization, an upside-down
image pyramid is first constructed. Global optimization algo-
rithm (e.g., differential evolution [15]) is used to find an
reliable starting point p0 at the bottom layer of the pyramid.
To update the parameters at the kth layer of the pyramid, local
optimization method (e.g., Newton’s method) is implemented
on the kth image pair whose floating image is first warped

using the parameters pk−1 transferred from the lower layer.
The parameter transfer process abridges the parameter gap
between the current image and its down sampled image. Local
optimization stage continues until it reaches the top layer of
the pyramid. Fig. 3(b) shows the computation of the NTG
value, which will be discussed in detail in Section III.

The success of NTG measure is due to two reasons. First,
the gradient operation relieves the influence of the local inten-
sity that varies slowly. It is straightforward that when the local
intensity keeps constant or varies slowly, its gradient scarcely
changes. Second, the global sparseness measure used in NTG
bears a rapidly varying local intensity such as contrast reversal.
Since the rapid intensity variation is local, it contributes rather
few unpleasant edges to the gradient of difference image. As a
result, the sparseness of the gradient of difference image is
dominated by the counteraction of those common structures.
In other words, the sparseness is mainly determined by the
degree of alignment.

We note that gradient sparseness of difference image is a
common attribute of unimodal or multimodal images. Though
the NTG measure is originally developed from multispectral
images, it can be successfully applied to general image regis-
tration tasks. For illustration the registration of medical image
pairs, flash/no-flash image pair, and multi-sensor image pair
are given in Section VI.

The main contributions of this work can be summarized as
follows:

• NTG is introduced as a registration measure based on the
assumption that the gradient of difference image is most
sparsely distributed when two images are well aligned.

• A framework, which is comprised of image pyramid and
global/local optimization, is proposed for multispectral
image registration.

• In additional to multispectral images, the registration
framework is also applicable to unimodal and multimodal
images.

The remainder of this paper is organized as fol-
lows. Section II reviews the related work on multispec-
tral/multimodal image registration. The NTG measure is intro-
duced in Section III and the image registration framework
is described in Section IV. Section V shows the experi-
mental results and Section VI illustrates the applications of
the proposed image registration method. Finally, Section VII
concludes the paper.

II. RELATED WORK

Intensity-based image registration can be categorized into
unimodal and multimodal image registrations, judged by the
criterion whether corresponding pixels have similar intensity
values. In this sense, multispectral image registration belongs
to the multimodal registration category. In the following only
the most relevant multimodal image registration methods are
reviewed.

A. Mutual Information (MI)

MI was introduced for medical image registration in [12]
and extensively investigated in [13]. It is defined as

I (A, B) = H (A) + H (B) − H (A, B), (1)
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Fig. 3. Multispectral image registration using NTG. (a) Registration framework. (b) NTG computation.

where H (·) denotes the entropy of image, and H (A, B)
denotes the entropy of the joint histogram of image A and B .
When two images are correctly registered, corresponding
regions should overlap and the joint histogram shows certain
clusters for the intensities of those regions. This results in a
least joint entropy H (A, B) [13]. Thus maximizing mutual
information can be viewed as registering images A and B
such that, in the overlap, the information (H (A) and H (B))
provided by the images is large and the local regions are in
good match. To further increase immunity against overlap,
normalized mutual information has been explored [16].

As a variant of MI, regionalized mutual information was
introduced to cope with the local intensity variation [17].
By assuming that local intensity varies slowly across the
image, global mutual information is constructed from local
regional distribution. Alternatively, the impact of slowly
varying local intensity can also be relieved by computing
MI in regions of large spatial variations (e.g., corners and
edges) [18], [19]. In [18] MI is augmented with the Harris
operator and in [19] MI is modified with the assistance of
saliency measure. Such methods perform well on images
with slow intensity variation at the cost of high computation
complexity.

B. Correlation Ratio (CR)

While MI describes the clustering property of joint his-
togram using entropy, CR characterizes such property using
variance [11]. CR stems from the law of total variance

var(A) = EB(var(A|B)) + varB(E(A|B)). (2)

When the joint histogram is well clustered, for every single
intensity that represents some local region in B , the variance
of intensity in the same local region of A should be small.
This leads to a small value of var(A|B). For all intensity
values of B in the region of overlap, the mean variance
of A denoted by EB(var(A|B)) is hence the smallest when
registered. Accordingly, the proportion of the second term of
the right hand side in (2) arrives its maximum, which indicates

the correlation ratio

C R = varB(E(A|B))

var(A)
(3)

is maximized.
Recently, CR was thrown light upon again in the view of

pattern matching. The work [20] starts from the discussion
of matching by tone mapping (MTM) and ends up with a
matching metric in form of CR.

Both MI and CR describe the regional correspondence of
two different modal images. When the intensity of two images
can be well approximated by functional mapping and the vari-
ation of regional intensity follows some form of distribution,
both MI and CR can achieve good registration. In CR-based
registration, variance is used to best measure the variation
of regional intensity that follows the normal distribution.
In MI-based registration, entropy is employed to measure the
sparseness of the joint histogram and bears a wider range
of distributions. However, functional correspondence does not
exist in multispectral images. As an example, Fig. 2(d) shows
the intensity correspondences of two aligned band image
patches (560 nm and 700 nm). Though the joint histogram
exhibits clusters, no functional mapping is observed.

C. Local Normalized Cross Correlation

While MI and CR are global intensity-based registration
methods, local normalized cross correlation (NCC) [10] has
been introduced to measure the correspondence between two
modal images locally. Based on the assumption that the direc-
tional derivative energy maps are locally linearly correlated,
NCC can be used to measure the similarity between two
multimodal patches. Since not all patches satisfy this assump-
tion, a build-in Hessian-based outlier rejection mechanism is
employed in [10] when constructing a global cost function.

A variant of NCC called robust selective normalized cross
correlation (RSNCC) [14], was recently introduced to solve
the dense matching problem of both multispectral and natural
images. To deal with structure inconsistency and notable
gradient variation, a robust function is designed to balance
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the local normalized cross correlation between intensities and
gradients. The robust selective function aims to reduce the
risk of registration inaccuracy, which can be caused in regions
violating the linearity assumption.

D. Residual Complexity (RC)

Our proposed NTG is closely related to [21] in the sense
of measuring the complexity of difference image. In [21]
the difference of two unimodal images with local intensity
variation, referred as the residual image, was used. It was
shown that the complexity of RC reduces to its minimum when
two images are aligned. RC is computed by measuring the
sparseness of discrete cosine transform (DCT) coefficients of
difference image. However, when two images are of different
modality, the sparseness of DCT coefficients is no longer guar-
anteed. The reason is that in multimodal cases the intensities
of two corresponding regions do not counteract with each
other in difference image when registered. Compared to RC,
the proposed NTG measures the sparseness of the gradient of
difference image. By taking the gradient, the residual intensity
counteracts with its neighbors so that multimodality induces
less impact on sparseness measurement.

E. Phase Correlation (PC)

PC is a well known FFT-based unimodal image registra-
tion technique [22] and has been extended to cover multi-
modal image by taking gradients/edges of multimodal images
as inputs [23]. Assuming the gradients of two multimodal
images are global phase-correlated, phase correlation tech-
nique can find the rigid transform between two multimodal
images quickly. In the case of multispectral image registra-
tion, the spatial contrast differences may violate the global
phase-correlated assumption. Besides, PC is not applicable to
nonrigid deformation (e.g., affine transform), which is actually
a common circumstance in multispectral image registration.

III. NORMALIZED TOTAL GRADIENT (NTG)

Statistics of image features are of significant use in the
image processing and computer vision fields. The sparseness
of gradients of natural images has been prevalently applied
in single image deblurring [24], denoising [25], and inpaint-
ing [26]. Statistics of multispectral images have also been
exploited in efficient image representation [27]. In this work,
the feature of gradient sparseness, which is computed on dif-
ference image, is explored for multispectral image registration.

A. Sparseness

To validate the sparseness assumption of the gradient of
difference image, a multispectral image database with 77
real-world scenes [27] is employed. Some images are shown
in Fig. 4(a). Each multispectral image consists of 31 band
images that cover the visible spectrum from 420 nm to 720 nm
at interval 10 nm. Image intensities are normalized to the range
[0, 1]. All multispectral images are originally aligned. The
misaligned multispectral images are generated by imposing
displacements on all bands except for the reference band.

Without loss of generality, we use the band image at 560 nm as
the reference image as it is usually less affected by noise. The
difference image is then computed as the difference between
the reference image and another band image.

Fig. 4 shows the distributions of gradient of difference
image when the imposed displacements (with �x = �y) vary
from 0 to 8 pixels. The distribution is more heavy-tailed when
the displacement becomes smaller. There will be more zero
gradients and less large gradients in difference image when
two images are gradually aligned. The distribution of gradients
is the sparest in case of perfect alignment. As a consequence,
the absolute sum of the gradients of the aligned difference
image is smaller than that of the misaligned difference image.
Let fR(x) denotes the reference image with spatial coordi-
nates x = (x, y)T, f (x) and f̃ (x) denotes the aligned and
misaligned floating images, this observation can be formulated
as

∑

x∈�

|∇l
(

f (x) − fR(x)
)| ≤

∑

x∈�

|∇l
(

f̃ (x) − fR(x)
)|, (4)

where operator ∇l , with l ∈ {x, y}, denotes the derivative along
the direction l, and � denotes the effective domain of image.
Using the L1-norm, (4) can be written as

‖∇l(f − fR)‖1 ≤ ‖∇l (f̃ − fR)‖1, (5)

where f , fR , f̃ respectively denotes the vectorized form of
image f (x), fR(x), f̃ (x), and

‖∇l(f − fR)‖1 =
∑

x∈�

|∇l ( f (x) − fR(x))|.

By summing over all directional derivatives we have
∑

l

‖∇l (f − fR)‖1 ≤
∑

l

‖∇l(f̃ − fR)‖1. (6)

Naturally the L1-norm plays a role of global sparseness
measure on the gradients of difference image. In the liter-
atures the L1-norm of the gradient of the image along all
directions (x and y in this work) is referred as the anisotropic
total gradient of the image [28]. Since it is deduced from
the distribution of the gradients of difference image in this
work, we refer it the total gradient (TG) of difference image.
According to (6) the TG of the aligned different image is
smaller than that of the misaligned one, hence minimizing the
TG of different image is equivalent to image pair alignment.

The relationship between image alignment and gradient
sparseness can be intuitively explained. It is expected that,
when two images are aligned, the gradients of these images
overlap with each other. Consequently, the number of nonzero
gradients of difference image (measured by L1-norm in TG
computation) reduces.

B. Normalization

A measure is computed on the pixels in the region of
overlap between two images. It would be of limited use if
it is sensitive to overlap variation. The work [16] presents
an extensive discussion on the overlap, and introduces the
normalized mutual information (NMI) to reduce the effect of
varying overlap on entropy measure.
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Fig. 4. (a) Multispectral images of real-world scenes (displayed in RGB). (b) Distributions of gradients of difference image in cases of various displacements.
(c) Close-up view of the highlighted area in (b). Note that we set the displacements �x = �y in the simulation, for clarity only �x is shown here.

Fig. 5. Average NTG values on 77 multispectral images with respect to
spatial displacements �x and �y.

The TG of difference image is also sensitive to the overlap
because the summation of absolute gradients is defined on the
region of overlap � when two images are misaligned. The
value of total gradient reduces when the region of overlap
become smaller, and eventually falls to zero when there is no
overlap between two images. This case should be definitely
avoided during the registration process. Hence, normalization
with respect to overlap is necessary. If we treat the L1-norm as
a kind of energy measure, the total energy in two images can
be computed as

∑
l(‖∇l f‖1 + ‖∇l fR‖1) and the normalized

total gradient (NTG) of difference image is defined as

NTG( f, fR) =
∑

l ‖∇l (f − fR)‖1∑
l(‖∇l f‖1 + ‖∇l fR‖1)

. (7)

In (7), the numerator is the total gradient of difference image
and the denominator is the total energy that normalizes the
measure. It can be easily verified that 0 ≤ NT G ≤ 1.
Minimizing NTG is equivalent to minimizing the relative total
gradient of difference image under the normalization of total
energy.

To verify the effectiveness of NTG, we compute the NTG
values on 77 multispectral images [27] with respect to different
displacements (with �x = �y). Fig. 5 shows the trend of
average NTG values with respect to different displacements.
It is observed that the NTG value decreases slowly when the
displacement varies from 10 to 4 pixels. However, it changes
abruptly when the displacement is less than 4 pixels, and
reaches minimum in the case of perfect alignment (�x =

�y = 0). This trend is consistent to the distributions of
gradients in Fig. 4. The gradients and corresponding NTG
values, which are computed from two band images with
various displacements, are illustrated in Fig. 6. As shown,
a smaller displacement results in a sparser gradient image and
accordingly a smaller NTG value.

Based on the above analysis, NTG is an excellent indicator
for perfect image alignment, but cannot easily distinguish large
image displacements. Consequently, the objective function
defined by NTG (see (10)) is not convex with respect to
transform parameters. To cope with this characteristic, we use
image pyramid and global optimization in the registration
framework. By sub-sampling, the image pyramid relieves the
impact of large displacements and makes the global region of
convergence be easily traced. The global optimization (such
as differential evolution [15]) further reduces the risk of being
stuck into local minimums. The success of this strategy will
be validated by experiments.

IV. MULTISPECTRAL IMAGE REGISTRATION

The problem of multispectral image registration can be cast
as the minimization of NTG measure with respect to either
parametric or non-parametric transform. In the following we
focus on image registration with global affine transform. Affine
transform has been frequently used as the pre-processing of
medical image registration [29]. It has been verified that affine
transform suffices in aligning band images [30].

The aim of image registration is to find a transform
with parameter p such that the transformed floating image
g(x, p) = f (u(x, p), v(x, p)) matches the reference image
fR(x). The affine transform can be formulated as

(
u
v

)
=

(
x y 1 0 0 0
0 0 0 x y 1

)
p, (8)

where p = (p1, p2, . . . , p6)
T. Then aligning the floating and

reference images is equivalent to solve the parameter p∗,

p∗ = argmin
p

J (p), (9)

where the objective function J (p) is defined as

J (p) := NT G(g, fR)

=
∑

l
∑

x∈�(p) |∇l
(
g(x, p) − fR(x)

)|
∑

l
∑

x∈�(p) (|∇l g(x, p)| + |∇l fR(x)|) (10)
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Fig. 6. Gradients of difference image and corresponding NTG values in cases of various displacements.

and �(p) denotes the region of overlap. In this case,
the region of overlap is defined as a set of points who
have valid values after parametric transform, i.e. �(p) :=
{(x, y)|(u(x, p), v(x, p)) ∈ �} and � is the domain of image.

A. Framework

The image registration framework (Fig. 3) consists of global
optimization and local optimization. In the framework, images
are first subsampled into K layers to form an upside down
image pyramid whose lower layer is the subsampled version of
the upper one. Global optimization is performed on the bottom
layer to obtain a good initial estimation for the successive
optimization. The initial point is transferred to the upper layer
and refined by local optimization until reaching the top layer.
This hybrid optimization strategy balances the computation
efficiency and accuracy of image registration. In this work we
use the differential evolution (DE) [15] and the well-known
Newton’s method to serve as the global and local optimizers,
respectively. Differential evolution (DE) is a genuinely useful
global optimization algorithm and has earned a reputation as a
very effective and reliable global optimizer [15]. Other global
and local optimization algorithms can also be incorporated into
our framework.

B. Global Optimization

In global optimization, we use the DeMat library [15]
to search the initial point at the bottom layer. The para-
meters of the DE algorithm are set according to practical
requirement. For our captured multispectral images, we found
that a population of 30 individuals and 200 generations are
usually adequate for deriving a good initial point. Other
parameters are set by default [15]. Since no severe deformation
is observed and large displacements have been reduced by
down-sampling, the searching space of p = (p1, . . . , p6)

T

is constrained from [0.95,−0.05,−10,−0.05, 0.95,−10]
to [1.05, 0.05, 10, 0.05, 1.05, 10]. Larger displacements are
adopted in the experiment to extensively evaluate the regis-
tration algorithm.

The choice of number of pyramid layers, K , is relevant
to the sampling factor and image size. In this work the
sampling factor is simply set as α = 2. A large number of
pyramid layers can accelerate the global optimization process,
but image structure will lost in the bottom layer. This will
consequently result in unreliable initial point for the local

optimization process. According to our experience, a four-
layered image pyramid (i.e., K = 4) is appropriate for our
acquired multispectral images with 1392×1040 pixels. It well
balances the computational efficiency and accuracy.

C. Local Optimization

In local optimization, the parameters at each layer is updated
as

pt+1 = pt − (HJ
p )−1 Jp|p=pt , (11)

where HJ
p and Jp are, respectively, the Hessian matrix and

gradient of the objective function J (p) with respect to para-
meter p. The superscript t denotes the iteration index. Since
the global optimization has provided a reliable initial point,
we found that 6 iterations are usually sufficient for Newton’s
method to refine the parameter. Readers are suggested to refer
Appendix A for more detailed implementation of Newton’s
method.

D. Parameter Transfer

There is a gap between the initial parameter of images at
kth layer and the estimated parameter of images at (k − 1)th
layer due to the down sampling operation. When affine
transform is used, we simply scale the translation parts of
the parameter with the sampling factor α to abridge this gap.
More specifically, if the translation parameters estimated at
the (k − 1)th layer are p3 and p6, their initial values are set
as αp3 and αp6 at the kth layer.

V. EXPERIMENTS

Experiments were conducted on our multispectral images
and the CAVE database [31]. Our multispectral images (see
Fig. 7) were captured using the imaging system illustrated
in Fig. 1. The acquired band images are sharp and not
affected by out-of-focus blur with a mechanical focusing
device [5]. The CAVE database consists of 31-band multispec-
tral images (400 − 700 nm, at 10 nm intervals) of 31 static
scenes (totally 961 band images) and is publicly available. 1

Fig. 8 illustrates eight sample images.
The MI [12], RC [21], CR [11], RSNCC [14], and proposed

NTG measures are incorporated into the same image registra-
tion framework (global optimization only) for fair comparison.

1http://www1.cs.columbia.edu/CAVE/databases/multispectral/.
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Fig. 7. Ten sample images (S1, S2, . . ., S10) and a pattern image (displayed
in RGB) used in experiments. The pattern image is used to compute the ground
truth transform.

Fig. 8. Sample images (displayed in RGB) in the CAVE database.

As PC [22] does not have a specific measure form, its image
registration algorithm is individually implemented. We com-
pute image edges according to [23] and implement PC using
the function imregcorr in Matlab R2016a. Our exploration
indicates that the original RSNCC [14] suffers the overlap
problem, i.e., its value reduces when overlap region shrinks.
Hence we revise RSNCC by normalizing it with the size of
overlap region to increase its robustness.

In the experiments, different measures are evaluated using
both synthetic and real data. In the synthetic data experiment,
we use similarity transform as the simulated deformation so
that PC [22] can be quantitatively evaluated. In the real data
experiment, we use affine transform to approximate the defor-
mation in our captured multispectral images and investigate the
registration accuracy. Similarity transform is assumed when
applying PC [22]. The NTG-based image registration method
is additionally evaluated in a practical circumstance that the
multispectral imaging system suffers out-of-focus blur.

A. Synthetic Data

The synthetic data experiment is first conducted on the S2
multispectral images in Fig. 7 using simulation. The band
image at 400 nm is used as the reference image, and the band
images at 480 nm, 560 nm, 620 nm, and 700 nm are used

as the floating ones. As observed in the top left of Fig. 9,
there are obvious local contrast inconsistency in the band
images. To further simulate local intensity variation, we add
dark clouds on the floating images (see bottom left of Fig. 9).
The dark cloud is generated by Gaussian model with standard
deviation σ , as described in Appendix B. The synthetic trans-
forms imposed on floating images include spatial translation
and rotation/scaling. To evaluate different measures on severe
image deformation, the translations �x and �y are set in the
range of [−20, 20] pixels. The rotation angle θ ∈ [−10°, 10°]
and the scaling factor s ∈ [0.5, 1.5].

Fig. 9 shows the cost maps of different measures in the cases
of translation and rotation/scaling transforms. 2 The measure
values are first normalized to range [0, 1] and then color
encoded for better comparison. For MI and CR, the quantities
1/MI and 1-CR are used as their corresponding measures
to keep the consistency of all measures (reaching minimum
when aligned). It is observed that MI [12], RC [21], and
CR [11] are more or less influenced by contrast inconsistency
and slow intensity variation. This observation is expected,
as these measures are computed on image intensities that are
inconsistent among band images. In comparison, the revised
RSNCC and proposed NTG measures produce the correct
transforms. Their robustness to local intensity variation is
mainly due to the incorporation of gradient operations.

We further evaluate the robustness of different measures
by increasing the intensity and contrast inconsistency between
band images. When the standard deviation σ increases the
dark cloud becomes larger, and consequently the contrast
inconsistency and local intensity variation become severer.
Fig. 10 shows the registration error curves of different mea-
sures with respect to σ . The registration error is computed
as the mean radial distance between the pixel positions of
the reference image and those of the clouded floating images
after registration. It is observed that both RSNCC [14] and
NTG achieve the highest registration accuracy and perform
constantly stable in case of various dark cloud levels.

The measures are also extensively evaluated on the CAVE
database. For all scenes, the band images at 560 nm are used as
the reference images. The floating images are generated from
the 961 band images (31 scenes × 31 bands) by imposing
similarity transforms with known specific parameters. The ref-
erence and floating images are then aligned using PC [22] and
different measures. The evaluation is conducted on medium
displacement (s = 1.1, θ = 10◦, �x = −10, �y = 10) and
large displacement (s = 1.25, θ = 30◦, �x = −20, �y = 20).

Fig. 11 shows the registration errors of the 961 band images
in the cases of medium and large displacements. For better
visual comparison, the registration errors of each measure are
plotted in ascending order. The registration beyond 3 pixel
error is regarded as failure in the experiments. In case of
medium displacement, the revised RSNCC [14], PC [22],
and NTG run successfully on more than 89% images. NTG
produces the lowest registration error (0.17 pixels), followed
by RSNCC (0.29 pixels) and PC (0.47 pixels). In case of large

2The PC algorithm does not have a measure form, and thus the cost map
cannot be plotted.
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Fig. 9. Cost maps of the MI [12], RC [21], CR [11], RSNCC [14], and proposed NTG measures. In translation transforms, the measures are computed
with respect to translations �x and �y. In rotation/scaling transforms, the measures are computed with respect to rotation angle θ and scaling factor s. The
measure values are color encoded according to the color bar in the normalized range [0, 1]. The ground truth translation is (0, 0) pixels and the ground truth
rotation/scaling is (0◦, 1.0). These ground truth transforms locate at the centers of the cost maps. See text for details.

Fig. 10. Registration error curves of the MI [12], RC [21], CR [11],
RSNCC [14], PC [22], and proposed NTG measures with respect to the
standard deviation σ of dark cloud. The reference and floating images are
the band images of S2 at 400 nm and 560 nm, respectively.

displacement, the registration error of NTG is also the lowest.
The above evaluation on the CAVE database verifies that the
NTG measure is in general superior to the competitors.

B. Real Data

We capture the mutlispectral images of 10 real scenes and
a pattern board (see Fig. 7) using our imaging system. The
imaging condition is kept fixed and the ground truth transform
parameters are obtained from the pattern image by calibration.
The transform parameters are also individually estimated from
the sample images (S1, S2, · · · , S10). Then the ground
truth parameters and estimated parameters are applied on the
centers of the circles in the pattern band images. The mean
radial displacement between corresponding remapped circle
centers is regarded as the registration error. To conduct a
more accurate registration, in the experiment we estimate the
parameters of affine transform (or similarity transform in case
of PC [22]). Table I lists the median registration error (in
pixels) of the 10 samples using different registration measures.
It is observed that NTG yields subpixel accuracy and performs
better than the competitors.

As a detailed example, Fig. 12 shows the registration errors
of the sample S1 and S2 along different bands. The registra-
tion errors by the proposed NTG measure are generally smaller
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TABLE I

MEDIAN REGISTRATION ERRORS USING DIFFERENT MEASURES (IN PIXELS). THE SMALLEST ERRORS ARE IN BOLD

Fig. 11. Registration error curves of the MI [12], RC [21], CR [11],
RSNCC [14], PC [22], and proposed NTG measures on the CAVE database.
(a) Medium displacement. (b) Large displacement. The sample numbers of
each measure are individually reordered with respect to the registration errors
produced by that measure.

than others. The close-up views of image registration results of
the sample S1 and S2 are further shown in Fig. 13, where the
floating image is at band 420 nm and the reference image is at
band 560 nm. The image pairs before and after registration are
displayed in composite RGB. It is observed that the proposed
NTG measure always produce high registration accuracy. For
the competitors, small misalignment exists in sample S1 while
large misalignment occurs in sample S2.

C. Robustness to Blur

It is known that the filter wheel based multispectral imaging
system suffers from out-of-focus blur, which is caused by
the varying effective focal lengths in different bands [5].
For each band image, the out-of-focus blur can be modeled
using a Gaussian kernel [6]. To explore the robustness of the

Fig. 12. Registration errors (in pixels) produced by different measures on
(a) Sample S1 and (b) Sample S2.

proposed registration framework with respect to image blur,
we manually blur the captured multispectral images in Fig. 7
using Gaussian kernels, whose standard deviations σ (blur
levels) range from 0 to 4.75 pixels. Without loss of generality,
we keep the band image at 560 nm sharp and use it as the
reference image. We then estimate the transform parameters
from the blurred images, and compute registration errors using
the procedure mentioned above.

The distribution of mean registration error, which is com-
puted from all band images of the ten sample images using
the NTG-based registration method, is plotted in Fig. 15. It is
observed that the registration errors are around 0.4 pixels,
and become only slightly larger when increasing the blur
levels. This excellent attribute is due to the image pyramid
employed in the proposed registration framework. In the lower
layers, the image blur is reduced by down sampling and
thus the transform parameters can still be reliably estimated.
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Fig. 13. Close-up views of multispectral image registration results of samples S1 and S2 using MI [12], RC [21], CR [11], RSNCC [14], PC [22], and the
proposed NTG. Blending results of the floating image (band 420 nm) and the reference image (band 560 nm) are displayed in RGB.

Fig. 14. Close-up views of multispectral registration results using the NTG-based framework. First row: reference images (band No. 9). Second row: original
multispectral images. Third row: multispectral images after registration. Multispectral images are displayed in RGB for visualization.

Fig. 15. Registration errors with respect to blur levels. The errors are
computed from all band images of the ten samples in Fig. 7 using the NTG-
based registration method.

By transferring the parameters from the lower layers to the
upper layers, image registration can keep its robustness to the
out-of-focus blur. The effectiveness of similar strategy has also
been validated in recent works such as patch matching [32]
and image deblurring [33].

VI. APPLICATIONS

The multispectral images captured by filter wheel based
imaging systems may suffer from both misalignment and

Fig. 16. Multispectral image restoration (registration and deblurring) results.
Multispectral images are displayed in RGB. Blending results of the reference
image (No. 9) and two blurriest band images (No. 1 and No. 16) are displayed
in composited chessboards.

out-of-focus blur. We discuss the application of the pro-
posed method in two circumstances. In the first circum-
stance (Section VI-A) the multispectral images are well
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Fig. 17. Other registration tasks using MI [12], RC [21], CR [11], RSNCC [14], PC [22], and the proposed NTG. (a) Flash/no-flash image pair. (b) MR brain
image pair. (c) Retinal image pair. For better comparison only the close-up views of registration results in blue boxes are displayed. (d) The multi-sensor (infrared
and visible) image pair. The white boxes highlight the details for comparison.

focused by using a focusing device [5] and image registration
is applied on sharp band images. In the second circum-
stance (Section VI-B) no focusing device is employed and
thus image restoration must deal with both misalignment and
out-of-blur. Section VI-C further shows that, in additional to
multispectral images, the proposed method is applicable to
multimodal and other image registration tasks.

A. Multispectral Image Registration

Fig. 14 shows the registration results produced by the pro-
posed framework. The chromatic aberration caused by image
misalignment is obvious in the original acquired multispectral
images. After registration, the band images are well aligned
and accordingly the chromatic aberration in the RGB images
is eliminated.

B. Multispectral Image Restoration

In multispectral restoration, our aim is to remove both mis-
alignment and out-of-focus blur. As discussed in Section V-C,
the proposed framework is robust to image blur, hence image
registration is directly applied on the original captured mul-
tispectral images without any preprocessing. After image
registration, sharp band images can be further obtained using
the recent multispectral image deblurring algorithm [6]. The
multispectral image restoration results on real multispectral
images are shown in Fig. 16. For illustration, the two blurriest
images (band No. 1 and No. 16) and the reference image (band
No. 9) are displayed in a form of composite chessboard. It is
observed that the quality of the multispectral image (displayed
in RGB) are greatly improved after image restoration.

C. Other Registration Tasks

Though designed for multispectral images, the proposed
framework is also applicable to other multimodal/unimodal
registration tasks. The registration results of flash/no-flash
image pair, medical image pair, and multi-sensor image

Fig. 18. Function s(x) with respect to different values of c, The value of x
is in the range [−2, 2]. The absolute function |x| can be well approximated
by s(x) when c = 10.

pair are shown in Fig. 17. The flash/no-flash image pair
in Fig. 17(a) are available in [34]. The floating image is
generated by imposing a 5◦ rotation on the no-flash image.
The MR brain image pair in Fig. 17(b) are provided by the
Center for Morphometric Analysis at Massachusetts General
Hospital. 3 The floating image is the T1 image rotated by −5◦.
The retinal image pair in Fig. 17(c) is available in [35], and
the multi-sensor image pair in Fig. 17(d) is available in [10].

Fig. 17 shows that the MI [12], RSNCC [14], and NTG
based registration methods achieve plausible alignment results
on all image pairs. The RSNCC [14] and proposed NTG
measures produce better alignment results on the multi-sensor
image pair (Fig. 17(d)) when compared with the MI mea-
sure [12]. PC [22] achieves good registration results on the
flash/no-flash and retinal image pairs, but fails on multimodal
image pairs. CR [11] does not produce satisfactory results
on the flash/no-flash and retinal image pairs. RC [21], as a
unimodal registration measure, only succeeds on retinal image
pair but the result is still inferior to RSNCC [14], PC [22], and
NTG. In summary, the proposed NTG measure performs better

3Available at http://www.cma.mgh.harvard.edu/ibsr/
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than the conventional MI [12], RC [21], CR [11] measures
and PC [22] method, and performs comparatively to the most
recent RSNCC [14] on these image pairs.

VII. CONCLUSIONS

This paper proposes a new measure, namely normalized
total gradient (NTG), for multispectral image registration. The
employment of NTG is based on the observation that the gra-
dient of difference image is the sparsest when two images are
perfectly aligned. An registration framework, which consists
of image pyramid and global/local optimization, is introduced
for affine transform. Experimental results validate that the
proposed NTG measure is well suited to multispectral image
registration and outperforms its competitors. As an extension,
the NTG can also be applied in other multimodal/unimodal
registration tasks.

There are two limitations in this work. First, the NTG
measure may fail in some special cases like periodic pattern
images. Fortunately, it is seldom that a real image contains
purely periodic patterns, and hence the proposed NTG measure
works in most cases. Second, the proposed method is only
implemented for affine transform, which is only applicable to
static and rigid objects. In the future we plan to incorporate the
NTG measure into nonrigid registration frameworks to further
extend its application.

APPENDIX A
DETAILS OF NEWTON’S METHOD

To minimize the objective function J (p) in (10) we first
denote m(p) and n(p) as the numerator and denominator of
J (p), respectively, as follows,

m(p) =
∑

x∈�(p)

(|gx(x, p) − fR,x (x)| + |gy(x, p) − fR,y(x)|),

n(p) =
∑

u∈�(p)

(|gx(x, p)|+|gy(x, p)|+| f R,x(x)| + | fR,y(x)|),

where the subscripts x and y denote the partial derivatives
along the x and y directions. With these notations, the objec-
tive function (10) is represented as J (p) = m(p)

n(p) . By taking
the derivative with respect to p we have

Jp = n−2(nmp − mnp), (12)

where mp and np denote the gradient of m and n with respect
to p. Note that in (12) the parameter p in parenthesis is omitted
for notation simplification. The (i, j)th entry in Hessian matrix
HJ

p is

HJ
p (i, j) = Jpi ,p j = n−2(nm pi ,p j − mn pi ,p j + 2mn−1n pi n p j

− m pi n p j − n pi m p j ).

Hence the Hessian matrix HJ
p becomes

HJ
p = n−2(nHm

p − mHn
p + 2mn−1npnT

p

− mpnT
p − npmT

p), (13)

where Hm
p and Hn

p denote the Hessian matrices of m and n
with respect to p.

To this end, in order to derive the gradient Jp and the
Hessian matrix HJ

p we resort to computing mp, np, Hm
p , and

Hn
p, which will be elaborated below.

A. Computing mp and np

Let d(x, p) denote the difference image, i.e.,

d(x, p) = g(x, p) − fR(x),

then it is easy to derive that

dx = gx − fR,x , dy = gy − fR,y,

dx,p = gx,p, dy,p = gy,p. (14)

Let ρ1(·) denote the first order derivative of the absolute
function | · | (see Appendix A-C). Since the overlap changes
slightly in the two consecutive updates of p, i.e. �p(pt ) ≈ 0,
by taking the derivatives of m and n with respect to p, we have

mp ≈
∑

x∈�(p)

(ρ1(dx)gx,p + ρ1(dy)gy,p) (15)

and

np ≈
∑

x∈�(p)

(ρ1(gx)gx,p + ρ1(gy)gy,p). (16)

We narrow our focus down to the computation of gx,p
and gy,p since all the other terms are known given the
current transform parameter pt . By implementing g(x, p) =
f (u(x, p), v(x, p)), we have

(
gx

gy

)
=

(
ux , vx

uy, vy

) (
fu

fv

)
.

Consequently it can be derived that

(
gx,pi

gy,pi

)
=

(
ux , vx

uy, vy

) (
fuu , fuv

fvu, fvv

) (
u pi

v pi

)

+
(

ux,pi , vx,pi

uy,pi , vy,pi

) (
fu

fv

)
, (17)

where pi ∈ {p1, p2, · · · , p6}. In (17), the gradient of the
objective function is finally decomposed to the transformed
first order and second order gradients of the floating image,
and the gradients of the transform model.

According to the affine transform model (8), we have

(
ux , vx

uy, vy

)
=

(
p1, p4
p2, p5

)
,

up = (x, y, 1, 0, 0, 0)T, vp = (0, 0, 0, x, y, 1)T,

ux,p = (1, 0, 0, 0, 0, 0)T, uy,p = (0, 1, 0, 0, 0, 0)T,

vx,p = (0, 0, 0, 1, 0, 0)T, vy,p = (0, 0, 0, 0, 1, 0)T.

To this end, the gradient of the objective function can be
computed by inserting (15), (16), and (17) into (12).
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B. Computing Hm
p and Hn

p

Let ρ2(·) be the second order derivative of the absolute
function | · |. By using (14) and (15), the (i, j)th entry in
Hm

p can be computed as

Hm
p (i, j) = m pi ,p j ≈

∑

x∈�(p)

(ρ1(dx)gx,pi ,p j + ρ2(dx)gx,pi gx,p j

+ ρ1(dy)gy,pi ,p j + ρ2(dy)gy,pi gy,p j ).

Hence the Hessian matrix Hm
p becomes

Hm
p ≈

∑

x∈�(p)

(ρ1(dx)H
gx
p + ρ2(dx)gx,pgT

x,pρ1(dy)H
gy
p

+ ρ2(dy)gy,pgT
y,p), (18)

where Hgx
p and H

gy
p are the Hessian matrices of gx and gy .

Similarly, we have

Hn
p(i, j) = n pi ,p j ≈

∑

x∈�(p)

(ρ1(gx)gx,pi ,p j + ρ2(gx)gx,pi gx,p j

+ ρ1(gy)gy,pi,p j + ρ2(gy)gy,pi gy,p j ),

and thus

Hn
p ≈

∑

x∈�(p)

(ρ1(gx)H
gx
p + ρ2(gx)gx,pgT

x,pρ1(gy)H
gy
p

+ ρ2(gy)gy,pgT
y,p). (19)

According to the affine model given in (17), we can derive
that

(
gx, pi , p j

gy, pi , p j

)
=

(
ux,p j , vx,p j

uy,p j , vy,p j

) (
fuu , fuv

fvu, fvv

) (
u pi

v pi

)

+
(

ux , vx

uy, vy

)(
fuu,p j , fuv,p j

fvu,p j , fvv,p j

) (
u pi

v pi

)

+
(

ux,pi , vx,pi

uy,pi , vy,pi

)(
Fu, p j

fv, p j

)
, (20)

where
(

fu, p j

fv, p j

)
=

(
fuu, fuv

fvu, fvv

) (
u p j

v p j

)
,

(
fuu, p j

fvu, p j

)
=

(
fuuu, fuuv

fvuu, fvuv

) (
u p j

v p j

)
,

and
(

fuv, p j

fvv, p j

)
=

(
fuvu, fuvv

fvvu, fvvv

) (
u p j

v p j

)
.

It is clear that the Hessian matrix of the objective function can
finally decomposed to the transformed gradients of the floating
image up to third orders. To this end, the Hessian matrix can
be computed by inserting (18), (19), and (20) into (13).

C. Form of ρ1 and ρ2

Since the absolute function |x | is not differentiable at x = 0,
we use the function

s(x) = x + 2

c
log(

1 + e−cx

2
) (21)

to approximate it. The function s(x) with respect to different
values of c is illustrated. The value of x , which is the gradient

of difference image, is in the range [−2, 2]. As illustrated, s(x)
gradually approximates |x | as c increases. Theoretically larger
c values will result in a better approximation. Our investigation
indicates that the value c = 10 suffices for NTG computation.
The first and second derivatives of s(x) are, respectively,

ρ1(x) = 1 − e−cx

1 + e−cx
(22)

and

ρ2(x) = 2c

e−cx + ecx + 2
. (23)

APPENDIX B
DARK CLOUD GENERATION

When added by dark cloud, the intensity of floating image
f (x, y) at spatial coordinate (x, y) is changed to

f ′(x, y) = (1 − γ (x, y)) f (x, y) + γ (x, y) fmin.

Here, fmin is the minimal intensity of image f (x, y), and
γ (x, y) is the Gaussian image defined as

γ (x, y) = exp

(
− (x − xc)

2 + (y − yc)
2

2σ 2

)
,

where (xc, yc) denotes the center of the Gaussian image, and
σ denotes the standard deviation.
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