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Abstract—Hashing-based approximate nearest neighbors
search has attracted broad research interest, due to its low com-
putational cost and fast retrieval speed. The hashing technique
maps the data points into binary codes and, meanwhile, preserves
the similarity in the original space. Generally, we need to solve
a discrete optimization problem to learn the binary codes and
hash functions, which is NP-hard. In the literature, most hash-
ing methods choose to solve a relaxed problem by discarding
the discrete constraints. However, such a relaxation scheme will
cause large quantization error, which makes the learned binary
codes less effective. In this paper, we present an equivalent con-
tinuous formulation of the discrete hashing problem. Specifically,
we show that the discrete hashing problem can be transformed
into a continuous optimization problem without any relaxations,
while the transformed continuous optimization problem has the
same optimal solutions and the same optimal value as the original
discrete hashing problem. After transformation, the continuous
optimization methods can be applied. We devise the algorithms
based on the idea of DC (difference of convex functions) program-
ming to solve this problem. The proposed continuous hashing
scheme can be easily applied to the existing hashing models,
including both supervised and unsupervised hashing. We evalu-
ate the proposed method on several benchmarks and the results
show the superiority of the proposed method compared with the
state-of-the-art hashing methods.

Index Terms—Continuous hashing, DC programming, large-
scale image retrieval, learning to hash (LH).

I. INTRODUCTION

RECENTLY, hashing-based approximate nearest neigh-
bors search has attracted substantial attention in various

fields, including large-scale image retrieval, machine learn-
ing, and computer vision [1]–[11]. Hashing method encodes
high-dimensional data points into compact binary codes, and
meanwhile maps similar data points to adjacent binary hash
codes to preserve the similarity in the original space. Using
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the binary codes to represent the massive data, nearest neigh-
bor search can be easily accomplished with a constant time
complexity.

Hashing methods can be mainly divided into data-
independent hashing [2], [15], [16] and data-dependent hash-
ing [6], [10], [12], [31], [36]. One of the most popular
data-independent hashing methods is locality sensitive hashing
(LSH) [23], which generates the hash functions by random
projections. Though LSH can map similar samples to sim-
ilar codes with high probability, it usually requires long
bits to achieve good precision. Such a drawback restricts its
application.

In recent years, the learning-based data-dependent hashing
methods have become more popular than the data-independent
hashing methods, for the benefit that they can effectively and
efficiently learn very compact binary codes of massive data.
Different from the data-independent hashing, data-dependent
hashing methods learn binary codes and hash functions from
data, so they are also called learning to hash (LH) methods.
Representative LH approaches include spectral hashing [7],
iterative quantization (ITQ) [6], supervised discrete hashing
(SDH) [12], structure sensitive hashing [14], and hashing
with angular reconstructive embeddings [47]. More recently,
Do et al. [20], Liong et al. [21], and Liu et al. [22] used deep
networks to learn binary hash codes and achieved promis-
ing performance. He et al. [24] proposed a novel hashing
scheme which can significantly save the training cost and
meanwhile preserve the semantic similarity of the original
data. Leng et al. [26], Wang et al. [27], and Liu et al. [28]
proposed distributed hashing methods to deal with the large-
scale image retrieval problems. The LH methods can be further
divided into unsupervised hashing [5], [17], [23], [25], [29],
[48]–[50] and supervised hashing [10], [12], [19], [30], [34],
[37], [53]. The main difference between unsupervised hash-
ing and supervised hashing is whether the label information
is available for learning hash functions.

In general, the data-dependent hashing methods (includ-
ing both unsupervised and supervised hashing) need to solve
a discrete optimization problem to learn hash functions and
hash codes, which is NP-hard. In the existing literature,
most hashing methods choose to relax the problem by drop-
ping the discrete constraints [7], [38]. Such a scheme brings
much convenience and greatly simplifies the original problem.
However, the relaxed problem can only obtain an approxi-
mate solution, which is proved to be less effective and of low
quality, especially when the codes have long bits. In this situ-
ation, some discrete optimization methods [12], [17], [18] are
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proposed, which learn the binary codes without relaxations.
Shen et al. [12] proposed a discrete supervised hashing method
named SDH, and Luo et al. [13] further gave a robust ver-
sion of SDH which can effectively suppress the influence of
unreliable binary codes and potentially noisily labeled sam-
ples. SDH and its variants solve the hashing problem using
the discrete cyclic coordinate descent, which is not time effi-
cient and can only be applied to the specific hashing model
having the form of binary quadratic program. In addition,
SDH is not suitable for solving the hashing problem with
bits uncorrelation and balance constraints, which are widely
used in hashing literature to make the binary codes efficient.
Liu et al. [17] proposed a discrete graph hashing method for
unsupervised hashing. However, this method needs to solve
expensive optimization subproblems at each iteration and the
proposed discrete optimization framework in [17] can only be
applied to the graph hashing model. Shen et al. [35] gave a dis-
crete optimization method termed discrete proximal linearized
minimization, which uses the projected gradient method to
solve the discrete binary codes learning problem. Generally,
the projected gradient method is suitable for solving the
convex optimization problem. However, the discrete hashing
problem is not a convex optimization problem, since the pro-
jection set is discrete. So the convergence of the projected gra-
dient iteration is difficult to be guaranteed. Attouch et al. [40]
claimed that if the objective function has Lipschitz continuous
gradient in the whole real space R

n and some other conditions
are satisfied, then the projected gradient method can converge
to a critical point. However, for most hashing problems, we can
only guarantee the objective function has Lipschitz continuous
gradient in a finite region. In addition, even these conditions
are satisfied, the projected gradient method can only converge
to a critical point while the quality of the critical point is not
guaranteed. Since the discrete hashing problem usually has a
mass of critical points, the performance of the convergence
point may be of low quality.

In this paper, to overcome the above-mentioned drawbacks,
we propose a method that transforms the discrete binary code
learning problem into an equivalent continuous optimization
problem without any relaxations. The main contributions of
this paper are summarized as follows.

1) We present an equivalent continuous formulation of the
discrete hashing problem. We show that the discrete
hashing problem can be transformed into a continuous
optimization problem without any relaxations. The trans-
formed continuous optimization problem has the same
optimal solutions and the same optimal value as the
original discrete optimization problem.

2) After transformation, we need to deal with a contin-
uous nonconvex optimization problem. We devise the
algorithms based on the idea of DC programming to
solve the problem for obtaining binary codes and hash
functions.

3) The proposed scheme can be applied to the existing
discrete hashing models, including both supervised hash-
ing and unsupervised hashing as well as hashing with
bits uncorrelation and balance constraints. We apply the
scheme to solve the large-scale image retrieval problems,

and perform numerical simulations on representative
retrieval benchmarks to show the superiority of the
proposed method, compared with the state-of-the-art
methods.

The rest of this paper is organized as follows. Section II
introduces the general hashing problem and reformulates
the discrete hashing problem as an equivalent continuous
optimization problem. In Section III, we propose the algo-
rithms based on the idea of DC programming to solve the hash-
ing problems. In Section IV, we evaluate the proposed methods
on several benchmarks with comparison to the state-of-the-art
methods. Finally, we draw the conclusion in Section V.

Notation: In this paper, we denote a matrix by a capital
letter, and a vector by a lowercase letter. We use 1 to denote the
vector with all components one. We use I to denote an identity
matrix. For a vector x, we use xT to denote the transpose of
x and we use ||x|| to denote its l2-norm. For a matrix X, ||X||
denotes its Frobenius norm and tr(X) denotes the trace of X.
We use sign(·) to denote the element-wise sign function.

II. CONTINUOUS FORMULATION OF HASHING PROBLEM

A. General Hashing Problem

Let X = [x1, x2, . . . , xn] ∈ R
d×n denote the data set

of n samples. The aim of hashing is to encode each high-
dimensional data point x into a compact binary code b ∈
{−1, 1}c. Generally, such a task is finished by solving the
following binary code learning problem:

min
B

L(B)

s.t. B ∈ {−1, 1}c×n (1)

where B = [b1, b2, . . . , bn] are the binary codes of the whole
data and L(B) is the objective function which is determined
by the specific hashing model.

The above problem is a discrete optimization problem,
which is NP-hard. Traditional hashing methods relax the
problem by discarding the discrete constraints. As stated
before, such a manner will bring large accumulated quanti-
zation error and make the binary codes less effective.

B. Continuous Formulation of Discrete Hashing

The relaxed method directly removes the discrete con-
straints, which makes the relaxed problem quite different
from the original problem. In other words, the optimal solu-
tion of the relaxed problem is usually different from that of
the original problem. Completely ignoring the discrete con-
straints is inadvisable. In this section, we present an equivalent
continuous formulation of the discrete binary codes learn-
ing problem. We show that the discrete binary codes learning
problem can be transformed into a continuous optimization
problem without any relaxations, and the transformed con-
tinuous optimization problem has the same optimal solutions
and the same optimal value as the original problem. Though
usually the transformed continuous optimization problem is
a nonconvex optimization problem and it is still NP-hard to
obtain its optimal solution, after transformation, we can apply
continuous optimization methods to solve the discrete hashing
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problem to obtain high-quality solutions. As we can see, in the
literature, there are more efficient methods that can be used
for continuous optimization, while the methods for discrete
optimization are relatively rare and the performance is usually
not satisfactory.

In this section, we consider a relatively simple case: the
hashing problem without bits uncorrelation and balance con-
straints, that is, problem (1). To reformulate problem (1) in a
continuous optimization form, we need the following lemma.

Lemma 1 [41]: Suppose that f is Lipschitz continuous on
X with constant L. Let ϕ be a non-negative function defined
on X and S := {x ∈ X : ϕ(x) = 0}. If d(x, S) ≤ ϕ(x) for all
x ∈ X , then for all γ ≥ L, the two problems

inf{f (x) : x ∈ S} and inf{f (x) + γ ϕ(x) : x ∈ X }
are equivalent, that is, the two problems have the same optimal
solutions and the same optimal value. Here

d(x, S) := inf
z∈S

||x − z||
denotes the distance from a point x to the set S.

Compared with the hashing problem having the bits uncor-
relation and balance constraints, problem (1) is relatively
simple, and the process of transforming problem (1) into a
continuous optimization problem is also relatively easy. In the
following, we present the specific transformation method.

Let

B1 = {
B ∈ R

c×n : B ∈ [−1, 1]c×n} (2)

and

B2 = {
B ∈ R

c×n : B ∈ {−1, 1}c×n}.

For all x ∈ B1, we have that

d2(x,B2) = min

{
c∑

k=1

n∑

i=1

(
xk,i − yk,i

)2 : y ∈ B2

}

=
c∑

k=1

n∑

i=1

(
1 − |xk,i|

)2
. (3)

Thus,

d(B,B2) =
√√√√

c∑

k=1

n∑

i=1

(1 − |Bk,i|)2

≤
c∑

k=1

n∑

i=1

(1 − |Bk,i|)

≤
c∑

k=1

n∑

i=1

(1 − B2
k,i)

= cn − tr(BBT) = ϕ1(B) (4)

for all B ∈ B1. It is easy to verify that ϕ1(B) ≥ 0 and B ∈ B2
iff ϕ1(B) = 0, for all B ∈ B1.

According to Lemma 1, we have that problem (1) is
equivalent to the following continuous optimization problem:

min
B∈B1

L(B) + γ ϕ1(B) (5)

for all γ ≥ L, where L is the Lipschitz constant of L(B) on B1.

This scheme can be applied to most existing hashing meth-
ods, including both supervised and unsupervised hashing. For
example, Shen et al. [12] proposed a supervised hashing model
which learns binary codes by optimizing

min
B,W

n∑

i=1

||yi − WTbi||2 + ν||W||2

s.t. bi ∈ {−1, 1}c (6)

where yi ∈ {0, 1}r is the label of data xi, W ∈ R
c×r is the

classification matrix, and ν is the regularization parameter. The
above problem (6) can be rewritten as the matrix form

min
B,W

||Y − WTB||2 + ν||W||2

s.t. B ∈ {−1, 1}c×n (7)

where Y = [y1, . . . , yn] ∈ R
r×n is the label matrix. Using

transformation approach shown above, the continuous equiv-
alent of (7) can be represented as

min
B,W

||Y − WTB||2 + ν||W||2 + γ ϕ1(B)

s.t. B ∈ [−1, 1]c×n. (8)

The unsupervised hashing problem can also be equivalently
formulated as a continuous optimization problem, for example,
the unsupervised graph hashing [7], which learns binary codes
by solving the following problem:

min
B

L(B) = tr(B(D − M)BT)

s.t. B ∈ {−1, 1}c×n (9)

where Mn×n is the affinity matrix with Mi,j = exp(−||xi −
xj||2/ε) and D is a diagonal n × n matrix with Di,i = ∑

j Mi,j.
Here, the parameter ε > 0 defines the distance in R

d which
corresponds to similar items. Note that the time complexity
to compute M is O(n2), which is unacceptable in large-
scale applications. In the real application, we will construct
an anchor-based affinity matrix [5] M = ZZT, where
Z ∈ R

n×m is a truncated similarity matrix. The time com-
plexity to construct M by Z is only O(nm) with m anchors
(m � n).

Applying the proposed continuous transformation method,
we give the continuous formulation of problem (9)

min
B∈B1

tr
(
B(D − M)BT) + γ ϕ1(B). (10)

Remark 1: The term ϕ1(B) can be seen as the penalty which
is used to eliminate the quantization error and force the optimal
solution of the transformed problem to be in the original
domain B2. The condition γ ≥ L is only a sufficient condition
but not necessary. Usually, a smaller γ is enough to guaran-
tee the equivalence of problem (5) and problem (1), especially
when B is large scale and correspondingly the Lipschitz con-
stant L is usually very large. Though a large γ can always
ensure that the optimal solution of (5) is the same as that
of (1), since ϕ1(B) is concave, large γ will also add the dif-
ficulty of optimizing (5). In the experiment section, we will
show that a moderate γ is enough to guarantee the quantization
error to be zero.
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C. Continuous Formulation of Hashing With Bits
Uncorrelation and Balance Constraints

To make the binary codes efficient, most hashing methods
will add the bits uncorrelation and balance constraints. With
these constraints, the hashing problem becomes

min
B

L(B)

s.t. B ∈ {−1, 1}c×n

B1 = 0

BBT = nI. (11)

From the last section, we see that, by introducing ϕ1(B),
the discrete hashing problem (1) can be transformed into a
continuous optimization problem. However, ϕ1(B) can only
transform the discrete domain B2 into the continuous domain
B1, but it cannot handle the additional bits uncorrelation and
balance constraints. In this section, we will show that by
constructing suitable ϕ(B), the bits uncorrelation and balance
constraints can also be eliminated, and the above problem (11)
can be transformed into an equivalent continuous uncon-
strained optimization problem. Meanwhile, the transformed
problem still has the same optimal solutions and the same
optimal value as the original problem (11). Since the two
constraints make the problem more complex, it is difficult to
directly construct ϕ(B) like the last section. In the follow-
ing, we give the method that constructs ϕ(B) step by step,
and one can see that due to the existence of the uncorrelation
and balance constraints, ϕ(B) is complex and quite different
from ϕ1(B).

Let

V = {
B ∈ R

c×n : B ∈ {−1, 1}c×n, B1 = 0
}

W = {
B ∈ R

c×n : B ∈ {−1, 1}c×n, B1 = 0, BBT = nI
}
.

From Lemma 1, we see that the key point to construct ϕ(B)

is to compute the upper bound of d(B,W) for all B ∈ B1. In
the following, we give the upper bound of d(B,W), ∀B ∈ B1
step by step.

Lemma 2: For all B ∈ B2

d(B,V) ≤ ||B1||.
Proof: Let X := {x ∈ R

n : x ∈ {−1, 1}n} and let Y := {y ∈
R

n : y ∈ {−1, 1}n, yT1 = 0}. Let a+ denote the number of the
components of x equaling to 1, and a− be the number of the
components of x equaling to −1. Without loss of generality,
we assume a+ ≥ a−. Then one has that for all x ∈ X

d2(x,Y) = 4
(

a+ − n

2

)

= 4

(
a+ − a+ + a−

2

)

= 2
(
a+ − a−)

≤ (
a+ − a−)2 = (

x′1
)2

.

The inequality holds because a+ − a− = 0 or a+ − a− ≥ 2.
Therefore, for all B ∈ B2

d(B,V) ≤ ||B1||. (12)

Lemma 2 is proved.

Let ϕ2(B) = ||B1||. It is easy to see that ϕ2(B) = 0 iff
B ∈ V , for all B ∈ B2, and ϕ2(B) is Lipschitz continuous
on B1.

Lemma 3: Let τ1 be the Lipschitz constant of ϕ2(B) on B1,
then one has that

d(B,V) ≤ (1 + τ1)ϕ1(B) + ϕ2(B),∀B ∈ B1.

Proof: Since ϕ2(B) is Lipschitz continuous on B1 with
constant τ1, we have that

ϕ2(B1) ≤ ϕ2(B2) + τ1d(B1, B2),∀B1, B2 ∈ B1.

Let B ∈ B1 and let B′ ∈ B2 be the projection of B on B2.
Then we have

d(B,V) ≤ d(B,B2) + d
(
B′,V)

≤ d(B,B2) + ϕ2
(
B′)

≤ (1 + τ1)d
(
B, B′) + ϕ2(B)

= (1 + τ1)d(B,B2) + ϕ2(B)

≤ (1 + τ1)ϕ1(B) + ϕ2(B).

The lemma is proved.
Let ζ(B) = (1 + τ1)ϕ1(B)+ϕ2(B), then one has that for all

B ∈ B1, d(B,V) ≤ ζ(B) and ζ(B) = 0 iff B ∈ V .
Next, we give an upper bound of d(B,W), ∀B ∈ V .
Lemma 4: For all B ∈ V , one has that

d(B,W) ≤ ς
(||BBT|| − n

√
c
)

where ς = n(3/2)c(3/2).
Proof: It is easy to see that

d(B,W) = min{||B − H||F : H ∈ W} ≤ 2
√

cn

for all B ∈ V . Let x1 and x2 be two vectors from D := {x ∈
R

n : x ∈ {−1, 1}n, xT1 = 0}. If xT
1 x2 
= 0, then it is easy to

see that |xT
1 x2| ≥ 2. Therefore, for B ∈ V , if B /∈ W , we have

that BBT 
= nI and

||BBT||2F − n2c ≥ 4.

Thus, for all B ∈ V , we have that

d(B,W) ≤ √
cn

(
||BBT||2F − n2c

)
/2. (13)

Note that

||BBT||2F − n2c = (||BBT|| + n
√

c
) ∗ (||BBT|| − n

√
c
)

and

||BBT|| + n
√

c ≤ nc + n
√

c ≤ 2nc

then

||BBT||2F − n2c ≤ 2nc ∗ (||BBT|| − n
√

c
)
.

Therefore,

d(B,W) ≤ n
3
2 c

3
2
(||BBT|| − n

√
c
)
.

Lemma 4 is proved.
Let ϕ3(B) = ||BBT||−n

√
c. It is easy to verify that ϕ3(B) =

0 iff B ∈ W , for B ∈ V .
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Lemma 5: Let τ2 be the Lipschitz constant of ςϕ3(B) on
B1, then for all B ∈ B1, one has that

d(B,W) ≤ (1 + τ2)ζ (B) + ςϕ3(B)

= (1 + τ2)[(1 + τ1)ϕ1(B) + ϕ2(B)] + ςϕ3(B).

The proof of Lemma 5 is the same to the proof of Lemma 3,
so we omit it.

Let ϕ(B) = (1 + τ2)[(1 + τ1)ϕ1(B)+ϕ2(B)] + ςϕ3(B). One
has that

d(B,W) ≤ ϕ(B)

and ϕ(B) = 0 iff B ∈ W , for all B ∈ B1. According to
Lemma 1, we derive that problem (11) is equivalent to the
following unconstrained continuous optimization problem:

min
B

L(B) + γ ϕ(B)

= L(B) + γ (1 + τ2)[(1 + τ1)ϕ1(B) + ϕ2(B)]

+ ςγϕ3(B)

s.t. B ∈ [−1, 1]c×n. (14)

For convenience, we can represent problem (14) by

min
B

L(B) + η1ϕ1(B) + η2ϕ2(B) + η3ϕ3(B)

s.t. B ∈ [−1, 1]c×n (15)

where η1, η2 and η3 are the parameters. Compared with (5),
the bits uncorrelation and balance constraints are eliminated
by introducing ϕ2(B) and ϕ3(B).

Also, we can apply the above scheme to existing hashing
models with bits uncorrelation and balance constraints. First,
we consider the supervised case. We consider that the objective
function L(B) in (11) has the same formulation as the objective
function in (7), that is, L(B) = ||Y − WTB||2 + ν||W||2. Then
the continuous formulation of the supervised hashing with bits
uncorrelation and balance constraints can be represented as

min
B∈B1

||Y − WTB||2 + ν||W||2 + η1ϕ1(B) + η2ϕ2(B)

+ η3ϕ3(B). (16)

Similarly, in the unsupervised case L(B) = tr(B(D − M)BT),
the continuous formulation can be represented as

min
B∈B1

tr
(
B(D − M)BT) + η1ϕ1(B) + η2ϕ2(B) + η3ϕ3(B).

(17)

Remark 2: In the hashing problem (11), the bits uncor-
relation and balance constraints are introduced to make the
code length short (more efficient). From (15), we see that the
terms η2ϕ2(B) and η3ϕ3(B) force the variable to satisfy the bits
uncorrelation and balance constraints. The larger the param-
eters η2, η3 are, the more the two constraints are satisfied.
Different from the traditional constrained optimization prob-
lems in which the constraints should be completely satisfied, in
the hashing problems, the bits uncorrelation and balance con-
straints are added to make the binary codes efficient, which
are not treated as hard constraints that cannot be violated. In
the hashing problem, we preferentially minimize the objective
function to make the binary codes effective. Shen et al. [12]

showed that excessively emphasizing the two constraints will
reduce the effectiveness of the solution. In Section IV, we
will also show that large η2, η3 are not conducive to getting
good binary codes. In real applications, in order to achieve a
tradeoff between effectiveness and efficiency, we can tune the
parameters η2, η3 with cross-validation techniques.

III. ALGORITHMS FOR SOLVING EQUIVALENT

CONTINUOUS HASHING PROBLEMS

In the above section, we have transformed the discrete
hashing problems into continuous optimization problems, then
many continuous optimization methods can be used to obtain
the binary codes and hash functions. In this section, we pro-
pose some algorithms based on the idea of DC programming
to solve the above continuous optimization problems. First, we
introduce some preliminaries of DC programming.

A. Brief Introduction of DC Programming

DC programming [42] is very suitable for solving smooth or
nonsmooth nonconvex continuous optimization problem. The
main idea of DC programming is to decompose the objective
function f (x) as

min f (x) = g(x) − h(x), x ∈ R
d

where both g and h are convex functions. For a constrained
optimization problem

min f (x) = g(x) − h(x), x ∈ C (18)

where C ⊆ R
d is a convex set, by introducing the indicator

function, the above problem can be formulated as the standard
DC form

min IC(x) + g(x) − h(x), x ∈ R
d

where

IC(x) =
{

0, x ∈ C
∞, else.

DC programming solves the above problems by DC algo-
rithm (DCA), which quite often gives global solutions. DCA
is proved to be more robust and more efficient than other
related standard methods, especially in the large-scale set-
ting [42]–[45]. The generic DCA scheme for solving (18)
can be formulated as Algorithm 1. Here, ∂h(x) denotes the
subgradient of h(x) defined as

∂h(x) =
{

y ∈ R
d : h(w) − h(x) ≥ 〈w − x, y〉,∀w ∈ dom h

}
.

If h(x) is differentiable, then ∂h(x) is just the gradient of h(x).
For a detailed introduction of DC programming and DCA,

one can refer to [43] and [46].

B. Algorithm for Solving Problem (8)

Like [12], we optimize problem (8) by alternatively updat-
ing the variables W and B. With fixed B, the variable W is
updated by

W = (
BBT + νI

)−1
BYT. (19)
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Algorithm 1 DCA
Initialization

Let x0 ∈ C be a starting point, and set k = 0.
Repeat

• Choose yk ∈ ∂h(xk);
• Choose

xk+1 ∈ arg min{g(x) − [h(xk) + 〈
(x − xk), yk

〉
]; x ∈ C};

• k = k + 1;
Until Convergence condition holds.

Algorithm 2 CSH
Initialization

Input training data {X, Y}; classification matrix W; code
length c; parameter γ . Initialize the starting point B0 by the
sign of random Gaussian matrix. Set k = 0.
Repeat

Compute Ak = 2(1 + γ )Bk;
Update B by Bk+1 = PB1 [(2WWT + 2I)−1(2WY + Ak)];
k = k + 1;

Until converge or reach maximum iterations.
Output B = sign(B);

With fixed W, the variable B is updated by optimizing

min
B

||Y − WTB||2 + γ ϕ1(B)

s.t. B ∈ [−1, 1]c×n. (20)

Note that the objective function of (20) is nonconvex with
respect to B. We aim to solve problem (20) by DC pro-
gramming. According to the last section, the key step to
apply DC programming is to decompose the objective func-
tion of problem (20) into the form of the difference of convex
functions like (18). We rewrite problem (20) as

min
B

G(B) − H(B)

s.t. B ∈ [−1, 1]c×n (21)

where G(B) = ||Y −WTB||2 + tr(BBT), and H(B) = tr(BBT)+
γ (tr(BBT)−cn). According to the generic DCA scheme shown
in Algorithm 1, to solve problem (21), at each iteration k, we
need to compute

Ak ∈ ∂H
(

Bk
)

= 2(1 + γ )Bk. (22)

Then, we compute Bk+1 by solving the convex programming

min
B∈B1

||Y − WTB||2 + tr
(
BBT) − tr

(
BTAk

)
(23)

which has the analytical solution

Bk+1 = PB1

[(
2WWT + 2I

)−1
(

2WY + Ak
)]

. (24)

We summarize the procedure of updating B in Algorithm 2. In
practice, we only need to alternatively update W and B 2 ∼ 5
times.

After the binary codes are obtained by the algorithm, we
then use them to generate a hash function so that a novel
query x ∈ R

d can be efficiently encoded into a binary code.

We adopt the widely used nonlinear hash function having the
form [12], [51]

F(x) = sign
(
PTφ(x)

)
(25)

where φ(x) = [ exp(−||x − a1||2/σ), . . . , exp(−||x −
am||2/σ)]T is an m-dimensional column vector obtained using
the RBF kernel mapping and P ∈ R

m×c is a projection matrix
that projects φ(x) onto the low-dimensional space. The vec-
tors a1, . . . , am are m anchor points randomly selected from
the training samples and σ is the kernel width. When the
binary codes B are obtained, the hash function is learned by
minimizing

min
P

||B − PTφ(X)||2.
It is easy to see that the optimal solution is

P = (
φ(X)φ(X)T)−1

φ(X)BT. (26)

Hash functions having the similar formulations as (25) are
widely used in the literature, such as SDH [12], SGH [48], and
KSH [10]. Such hash functions are demonstrated to have better
performance compared with linear hash functions, especially
when the data is linearly inseparable [10].

C. Algorithm for Solving Problem (10)

To apply the DC programming, we also rewrite
problem (10) as

min
B

G(B) − H(B)

s.t. B ∈ [−1, 1]c×n (27)

where

G(B) = tr
(
B(D − M)BT)

and

H(B) = γ
(
tr
(
BBT) − cn

)
.

Here, we adopt the anchor-based affinity matrix M = ZZT

with the truncated similarity matrix Z as stated before. To
optimize (27), according to DCA, at each iteration k, we
compute

Ak ∈ ∂H
(

Bk
)

= 2γ Bk. (28)

Then, we compute Bk+1 by solving the convex programming

min
B∈B1

J(B) = tr
(
B(D − M)BT) − tr

(
BTAk

)
. (29)

We see that the above problem has the analytical solution

Bk+1 = PB1

[
Ak ∗ (D − M)−1/2

]
. (30)

However, the time complexity for computing (D − M)−1

is O(n3), which is unacceptable in large-scale application.
Instead, we use the projected gradient descent method to solve
the subproblem (29), avoiding unacceptable computational
complexity. The gradient of J(B) is

∇J(B) = 2B(D − M) − Ak. (31)
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Algorithm 3 CUH
Initialization

Input training data X, code length c, parameter γ . Construct
the matrices M and D using the training data and anchor
points. Initialize the starting point B0 by the sign of random
Gaussian matrix. Set k = 0.
Repeat

Compute Ak = 2γ Bk;
Compute the gradient ∇J(Bk) = 2Bk(D − M) − Ak;
Update Bk+1 = PB1 [Bk − λ∇J(Bk)];
k = k + 1;

Until converge or reach maximum iterations.
Output B = sign(B);

The optimization procedure is summarized in Algorithm 3.
Here, λ is a constant stepsize. At each iteration in

Algorithm 3, we only need to update variable B once using
the projected gradient descent.

After the binary codes are obtained, we can compute the
projection matrix P using (26) to form the hash function F(x)
by (25).

D. Algorithm for Solving Problem (15)

As stated before, the bits uncorrelation and balance con-
straints are widely used in the previous hashing methods.
In this section, we aim to solve problem (15) by DC pro-
gramming. The term L(B) in (15) depends on the specific
hashing model. For the supervised hashing (16), L(B) =
||Y − WTB||2, and for the unsupervised graph hashing (17),
L(B) = tr(B(D − M)BT). We know that the key point to
apply DC programming is to decompose the objective func-
tion of (15) into the form of the difference of convex functions.
Note that ϕ1(B) is concave, and ϕ2(B) and ϕ3(B) are convex,
so we only need to decompose L(B) by

L(B) = L1(B) − L2(B)

with convex L1(B) and L2(B). In the literature, most existing
hashing models have convex objective functions, including the
above-mentioned two hashing models. In such cases, we can
directly set L1(B) = L(B) and L2(B) = 0.

Now, we rewrite problem (15) as

min
B∈B1

G(B) − H(B) (32)

where

G(B) = L1(B) + η2ϕ2(B) + η3ϕ3(B)

= L1(B) + η2||B1|| + η3
(||BBT|| − n

√
c
)

and

H(B) = L2(B) − η1ϕ1(B)

= L2(B) + η1
(
tr
(
BBT) − cn

)
.

Obviously, both G(B) and H(B) are convex. Next, we devise
the algorithm based on DCA to solve problem (32). At each
iteration k, we compute

Ak ∈ ∂H
(

Bk
)

= ∇L2(B) + 2η1Bk. (33)

Algorithm 4 CCH
Initialization

Input training data X, code length c, parameters η1, η2, η3.
Initialize the starting point B0 by the sign of random Gaussian
matrix. Set k = 0.
Repeat

Compute Ak = ∇L2(B) + 2η1Bk;
Compute the gradient ∇J(Bk) by (35) with B = Bk;
Update Bk+1 = PB1 [Bk − λ∇J(Bk)];
k = k + 1;

Until converge or reach maximum iterations.
Output B = sign(B);

Then, we obtain Bk+1 by solving the convex programming

min
B∈B1

J(B) = G(B) − tr
(

BTAk
)
. (34)

It is not easy to find an analytical solution of problem (34).
Similar to problem (29), we can solve this problem using
projected gradient descent method. The gradient of J(B) is
computed as

∇J(B) = ∇L1(B) + η2∇ϕ2(B) + η3∇ϕ3(B) − Ak (35)

where

∇ϕ2(B) = B ∗ 11T/||B1||
∇ϕ3(B) = 2BBTB/||BB||

and ∇L1(B) is determined by the specific hashing model. The
optimization procedure is summarized in Algorithm 4.

After obtaining the binary codes, we compute the projection
matrix P by (26) and form the hash function F(x) by (25).

Remark 3: The continuous constrained hashing (CCH) algo-
rithm is used for solving the discrete hashing problem with bits
uncorrelation and balance constraints, that is, problem (11).
Problem (11) is a general model and CCH is a general
algorithm framework. The CCH algorithm can be used for
solving both the supervised and unsupervised hashing prob-
lems. For clarity, in this paper, we respectively, use CCH-S
and CCH-U to represent the CCH algorithm for solving the
supervised hashing problem (16) and the unsupervised hashing
problem (17).

IV. EXPERIMENTS

In this section, we use numerical experiments to show
the performance of the proposed algorithms. We evaluate
our method on three benchmark datasets: 1) CIFAR-10 [12];
2) MNIST [34]; and 3) NUS-WIDE [5]. For each dataset, we
randomly select 1000 data points from the training data as
the anchor points. The baselines for comparison include the
supervised hashing: SDH [12], FSDH [33], COSDISH [30],
CCA-ITQ [6], KSH [10], and LFH [39]; and the unsupervised
hashing: IMH [32], AGH [5] SGH [48], OCH [36], and PCA-
ITQ [6]. For each method, we use the same parameters setting
provided by the corresponding papers. We use CCH-U and
CCH-S to, respectively, denote the CCH algorithm in the unsu-
pervised and supervised cases as stated before. In the following
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TABLE I
MAP AND PRECISION OF TOP 500 RETURNS ON CIFAR-10

TABLE II
TRAINING TIME WITH DIFFERENT CODE SIZES ON CIFAR-10

examples, we empirically set λ = 5, γ = 1, η1 = 2, η2 = 10,
and η3 = 10, and we set the maximum iteration number
t = 20.

All the results below are averaged over 50 independent runs.

A. CIFAR-10: Test on Tiny Natural Images

In this example, we choose the dataset CIFAR-10 to test the
performance of the proposed method. CIFAR-10 consists of
60K labeled images evenly divided in ten classes. Each image
is represented by a 512-D GIST descriptor extracted from a
32×32 color image. We randomly select 1000 points as queries
and use the rest as the training set. Since each data point
from CIFAR-10 has the label information, both supervised and
unsupervised hashing algorithms can be applied. The ground
truth neighbors of each query are determined based on the
label agreement.

For evaluation, we report the results in terms of mean
average precision (MAP) and mean precision of the top 500
retrieved neighbors based on Hamming ranking in Table I with
the code length varying from 8 bits to 256 bits.

From Table I, we see that the proposed continuous
supervised hashing (CSH), continuous unsupervised hashing

(CUH), and CCH algorithms outperform the other hashing
methods in most cases. We also see that CCH-S and CCH-U,
respectively, achieve better results than CSH and CUH, which
implies that the bits uncorrelation and balance constraints can
improve the quality of the binary codes.

We further report the training time consumption of the hash-
ing methods in Table II. The results show that our algorithms
are time efficient. The training time of the proposed methods
is much less than that of KSH, SDH, SGH, and COSDISH,
and is close to that of IMH, AGH, PCA-ITQ, OCH, CCA-ITQ,
LFH, and FSDH.

Next, we investigate the sensitivity of the parameters η2
and η3. Fig. 1 shows the MAP results of CCH-U and CCH-S
on CIFAR-10 with 64 bits with respect to different values
of η2 and η3. We can see that the moderate η2, η3 can help
to improve the retrieval accuracy, while the large η2, η3 will
reduce the retrieval accuracy on the contrary, which demon-
strates that excessively emphasizing the two constraints will
reduce the quality of the solution.

The parameter γ in CSH and CUH and the parameter η1 in
CCH-S and CCH-U mainly affect the quantization error. We
plot the curves of the quantization error with respect to the
parameters γ, η1 with 64 bits in Fig. 2. From the figure, we see
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(a) (b)

Fig. 1. MAP results with respect to parameters η2, η3 with 64 bits on CIFAR-10. (a) CCH-U. (b) CCH-S.

Fig. 2. Impact of γ and η1 on the quantization error with 64 bits.

TABLE III
ACCURACY ON MNIST UNDER CLASS-WISE SPLITTING PROTOCOL

that moderate γ, η1 are enough to guarantee the quantization
error to be very small, and when γ = 1 and η1 = 2, the
quantization error is very close to zero. The results shown in
the figure are in line with the statement in Remark 1.

B. MNIST: Evaluation Using the Class-Wise Splitting
Protocol [52]

Recently, a class-wise splitting protocol [52] was proposed
for evaluating supervised hashing, and it is demonstrated that
the class-wise splitting protocol can better capture desirable
properties of supervised hashing schemes, compared with the
traditional protocols. So, in this example, we use this proto-
col to further test the performance of the proposed method
on supervised hashing. The dataset for test is MNIST, which
consists of 70 000 images of handwritten digits from “0” to
“9.” Each of the images is represented by a 784-D vector. The
whole dataset is partitioned into a test set with 1000 samples
and a training set with all remaining samples. The class-wise
splitting protocol requires the hashing method to use disjoint
set of classes for training and testing. Like [52], we sepa-
rate the training set based on class splits into two disjoint
sets, namely train70 and train30, where train70 contains 70%
of the classes and train30 contains the remaining 30% of the
classes. Also, we separate the testing set into test70 and test30

using the same method, and the classes in test70 are the same
as those in train70. In this example, the set train70 is used
for training. The set train30 is the database for retrieval and
the set test30 is the query set. The set test70 is not used. We
show the results in terms of MAP and the mean precision of
the top 500 retrieved neighbors in Table III. The results show
that the proposed methods outperform the other supervised
hashing methods for comparison in most cases in terms of the
class-wise splitting protocol.

C. NUS-WIDE: Accuracy on Large-Scale Dataset

In this example, we test the performance of the proposed
method on the large-scale dataset NUS-WIDE, which con-
sists of around 270 000 Web images associated with 81 ground
truth concept labels and each image contains multiple seman-
tic labels. Each image is represented by a 500-D bag-of-words
feature. Any two images sharing at least one label are seen
as true neighbors. We collect 21 most frequent labels and
randomly select 100 images as queries for each label. We
use the remaining images as the training set. Note that it
is hard to separate the dataset based on class splits without
overlap since each sample in NUS-WIDE belongs to several
classes [54]. So, in this example, we use the same traditional
evaluation protocol as Example 1. Since the dataset of this
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(a) (b)

Fig. 3. Compared top-1000 MAP results on NUS-WIDE with code lengths from 32 to 256 bits. (a) Supervised hashing and (b) Unsupervised hashing.

(a) (b)

Fig. 4. Precision of top 500 returns on NUS-WIDE with code lengths from 32 to 256 bits. (a) Supervised hashing and (b) unsupervised hashing.

example is large-scale and it is very slow to compute MAP of
the whole dataset, we only return top 1000 retrieved samples
and calculate the MAP of the top 1000 returns. The results
in terms of top-1000 MAP and mean precision of top 500
retrieved neighbors are, respectively, shown in Figs. 3 and 4.
The results shown in the figures demonstrate the superiorities
of the proposed methods.

V. CONCLUSION

In this paper, we gave an equivalent continuous formula-
tion of the general discrete hashing problem. Specifically, we
showed that the discrete hashing problem can be transformed
into a continuous optimization problem without any relax-
ations, and the continuous optimization problem has the same
optimal solutions and optimal value as the original problem.
After transformation, we devised algorithms based on the
idea of DC programming and DCA to solve the continuous
optimization problem. We showed that such a scheme can be
applied to both supervised and unsupervised hashing models.
Experiments showed the superiority of the proposed method
in terms of accuracy and time efficiency.
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