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Distributed Graph Hashing
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Abstract—Recently, hashing-based approximate nearest
neighbors search has attracted considerable attention, especially
in big data applications, due to its low computation cost and
fast retrieval speed. In the literature, most of the existing
hashing algorithms are centralized. However, in many large-
scale applications, the data are often stored or collected in a
distributed manner. In this situation, the centralized hashing
methods are not suitable for learning hash functions. In this
paper, we consider the distributed learning to hash problem. We
propose a novel distributed graph hashing model for learning
efficient hash functions based on the data distributed across
multiple agents over network. The graph hashing model involves
a graph matrix, which contains the similarity information in
the original space. We show that the graph matrix in the
proposed distributed hashing model can be decomposed into
multiple local graph matrices, and each local graph matrix
can be constructed by a specific agent independently, with
moderate communication and computation cost. Then, the
whole objective function of the distributed hashing model
can be represented by the sum of local objective functions of
multiple agents, and the hashing problem can be formulated as
a nonconvex constrained distributed optimization problem. For
tractability, we transform the nonconvex constrained distributed
optimization problem into an equivalent bi-convex distributed
optimization problem. Then we propose two algorithms based
on the idea of alternating direction method of multipliers to
solve this problem in a distributed manner. We show that the
proposed two algorithms have moderate communication and
computational complexities, and both of them are scalable.
Experiments on benchmark datasets are given to demonstrate
the effectiveness of the proposed methods.

Index Terms—Alternating direction method of
multipliers (ADMMs), distributed hashing, graph hashing,
large-scale image retrieval, learning to hash (LH).

I. INTRODUCTION

HASHING-BASED approximate nearest neighbor search
has attracted considerable attention in many areas,

including information retrieval, image search, machine learn-
ing, and computer vision, etc. [1]–[13]. The main idea of
hashing is to encode high-dimensional data points into com-
pact binary codes, and the binary codes should be similarity
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preserving. In other words, the hashing technique maps similar
data points to adjacent binary hash codes. Through hashing,
nearest neighbor search can be accomplished with a constant
time complexity, which enables large efficiency gains in both
storage and computation speed.

Existing hashing methods can be mainly divided into
two categories: 1) data-independent and 2) data-dependent
schemes. Data-independent hashing methods do not use
any data information for obtaining hash functions. Locality
sensitive hashing [14] is one of the most widely known
data-independent hashing methods, and it generates hash func-
tions based on random projections. Recently, more works
focus on data-dependent hashing, for it can effectively and
efficiently map massive data points to very short compact
binary codes. Representative approaches include spectral hash-
ing [4], spherical hashing [21], iterative quantization (ITQ) [3],
structure sensitive hashing [51], adaptive binary quantiza-
tion (ABQ) [17], and a recently proposed fast optimization
method DPLM [11] which can solve general binary code
learning problems. Different from data-independent hashing,
data-dependent hashing methods learn binary codes and hash
functions using data, so they are also called learning to
hash (LH) methods [25].

LH methods mainly have two types: 1) unsupervised hash-
ing [3], [4], [15], [16], [18]–[20], [27], [28], [51] and 2)
supervised hashing [22], [24], [26], [32]–[35], [38]. The
main difference between the two types is whether the label
information of the data is available for learning hash func-
tions. Generally, supervised hashing can better preserve the
semantic similarity in the original space and is demonstrated to
achieve better accuracy, compared with unsupervised hashing.
Though the supervised hashing has promising performance,
this scheme has a fundamental drawback that it requires the
supervised labels. In many real-world applications, it is usu-
ally expensive or even impossible to get the semantic labels,
so in these cases only unsupervised hashing can be performed.
Hence, in this paper, we focus on unsupervised hashing.

Among the unsupervised hashing methods, graph hash-
ing is expected to achieve better performance than other
unsupervised hashing methods if the learning algorithms are
effective enough, for graph hashing learns hash codes and hash
functions by directly exploiting the similarity (neighborhood
structure), which typically reflects the pairwise relationship
between two data points. The objective of graph hashing
exactly matches the goal of similarity-preserving hashing.
In addition, graph hashing usually requires the bits of the
binary codes to be uncorrelated and balanced [4], [29], which
further guarantees the efficiency of hashing. The existing
graph hashing methods include spectral hashing, anchor graph
hashing [8], discrete graph hashing [29], ordinal constrained

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3147-1553


WANG et al.: DISTRIBUTED GRAPH HASHING 1897

hashing [30], scalable graph hashing (SGH) [31], and so on. In
the literature, most of the graph hashing methods have superior
accuracy compared with other unsupervised hashing methods,
especially for long-bit codes.

All the hashing methods mentioned above are centralized.
In other words, these methods are only suitable for leaning
hash functions by a single machine. However, in real-world
applications, we need to deal with many big-data problems,
such as large-scale image processing [36], [37], large-scale
information retrieval [39]. These problems are often beyond
the capacity of a single machine (computer). In this situation,
the data is usually partitioned and stored in multiple machines.
Furthermore, in the applications of search engine, the data is
usually collected by many agents and the whole data should be
utilized for indexing. Thus, we need to devise distributed algo-
rithms to solve these problems. The distributed algorithm has
been widely studied in a large variety of areas, including signal
processing [40]–[43], machine learning [44]–[46], and auto-
matic control [47]–[49]. In the distributed setting, each agent
can only exchange information with its neighbors, and the aim
is to cooperatively solve a large-scale problem with a moderate
communication cost. It will benefit a lot if such a distributed
manner can be adopted for learning hash functions based on
the data stored/collected by multiple machines. However, as
we know, such a critical issue is rarely considered in the liter-
ature. The most related methods we know are [50] and [52].
Leng et al. [50] gave a distributed hashing method named
DisH by decomposing a centralized hashing problem into
multiple subproblems. DisH obtains hash codes and hash func-
tions by learning a dictionary matrix. Liu et al. [52] proposed
a distributed ABQ (DABQ) by extending the ABQ method
into a distributed learning framework, which speeds up the
training of ABQ. However, these methods do not fully utilize
the similarity in the original space. In addition, these methods
do not constrain the bits of the binary codes to be uncorre-
lated and balanced, while bits uncorrelation and balance are
two key features of compact binary code learning [4].

In this paper, to fully utilize the similarity among the data
samples, we propose a novel graph hashing model for learn-
ing efficient hash functions in a distributed manner. Inspired
by [8], we construct an anchor point-based graph matrix for
modeling the distributed graph hashing. We show that the
graph matrix in the proposed distributed hashing model can
be decomposed into multiple local graph matrices, and each
local graph matrix can be constructed by a specific agent
independently, with moderate communication and computa-
tion cost, which satisfies the distributed setting. Using this
graph matrix, we cast our graph hashing model. We add the
widely used bits uncorrelation and balance constraints to make
the learned binary codes and hash functions more efficient.
In order to devise distributed algorithms, we decompose the
objective function of this graph hashing model into a set of
local objective functions. Then the whole problem can be suc-
cessfully formulated as a constrained distributed optimization
problem. The constrained optimization problem is a noncon-
vex optimization problem. For tractability, we reformulate the
problem as an equivalent bi-convex optimization problem.
Then we propose two distributed algorithms, respectively,

named sequential distributed hashing (SDH) and parallel dis-
tributed hashing (PDH) based on the alternating direction
method of multipliers (ADMMs) [46] to solve this problem.
Both of the two algorithms perform well and meanwhile each
of them has its own advantages. PDH is more time efficient,
while SDH consumes less resource.

The rest of this paper is organized as follows. In Section II,
we introduce some necessary notations and preliminaries. In
Section III, we propose a distributed graph hashing model
and give the problem formulation. We propose two distributed
algorithms to solve the problem in Section IV. The commu-
nication and computational complexity analyses are given in
Section V. Numerical simulations on large-scale benchmark
datasets are provided in Section VI. Finally, we draw the
conclusion in Section VII.

II. PRELIMINARIES

A. Notation

In this paper, a lowercase letter is used to denote a column
vector and a capital letter is used to denote a matrix. For a
vector x, we use xT to denote the transpose of x. We use ‖x‖
to denote the l2-norm of x. For a matrix X, Xi,j denotes the
entry in the ith row and jth column of X, ‖X‖F denotes the
Frobenius norm, and tr(X) denotes the trace of X. We use
sign(·) to denote the element-wise sign function. We use I to
denote an identity matrix.

B. Graph Hashing

Let X = [x1, x2, . . . , xn] ∈ R
d×n denote the dataset of n

samples, where d is the dimensionality of the data. Without
loss of generality, the data points are assumed to be zero
centered, i.e.,

∑n
i=1 xi = 0. Hashing is to encode each high-

dimensional data point xi into a compact binary code yi ∈
{−1, 1}c, where c is the code length. Generally, we will learn
c binary hash functions {hk(·)|k = 1, 2, . . . , c}, or equivalently,
a c-dimensional hash function h(·) = [h1(·), h2(·), . . . , hc(·)]T,
so that the binary code of a query x can be easily computed as
y = [h1(x), h2(x), . . . , hc(x)]T. Graph hashing formulates the
binary code learning problem as follows:

min{yi}

n∑

i,j=1

Wi,j‖yi − yj‖2

s.t. yi ∈ {−1, 1}c

n∑

i=1

yi = 0

1

n

n∑

i

yiy
T
i = I (1)

where W = [Wi,j]n×n is called the graph matrix and Wi,j =
exp(−‖xi −xj‖2/ε), denoting the Euclidean similarity between
xi and xj. Here, parameter ε > 0 defines the distance in R

d

which corresponds to similar items. The last two constraints
force the binary codes to be balanced and uncorrelated, respec-
tively. From the objective function we see that graph hashing
tends to assign adjacent binary codes for similar data points,
which matches the goal of similarity-preserving hashing.
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Fig. 1. Randomly generated network with 10 agents.

C. Network Model

In this paper, we consider that the data is distributed across
m agents (each agent can be seen as a single machine), and
the m agents together constitute a network (e.g., Fig. 1). The
topology of the network is represented by an undirected graph
G = (V, E), where V := {1, 2, . . . , m} denotes the set of ver-
tices, and E ⊂ {{l, j}|l, j ∈ V, l �= j} denotes the set of edges.
Each vertex of the graph is referred to as an agent. The edge
{l, j} ∈ E indicates that agents l and j are neighbors which
can directly exchange information with each other through an
undirected link. We use Nl to denote the set of the neighbors
of agent l (excluding itself), and |Nl| to denote the degree of
agent l. We assume the whole network is strongly connected
so that any two agents can communicate directly or indirectly
with each other.

The network model can describe various networks. In dif-
ferent networks, the agents represent different machines. For
example, in the wireless sensor network, each agent rep-
resents a sensor node; in the small cell networks, each
agent represents a base station; in the camera network, each
agent represents a camera; in the computer network, each agent
represents a computer.

III. FORMULATION OF DISTRIBUTED GRAPH HASHING

In this section, we propose a distributed graph hashing
model to learn hash functions based on the data distributed
across m agents over a connected network (e.g., Fig. 1). For
each l ∈ V , let Xl = [xl

1, xl
2, . . . , xl

nl
] ∈ R

d×nl denote the local
dataset of agent l, whose columns are the data points in this
agent. Then the whole data set X is a concatenation of local
datasets, i.e., X = [X1, X2, . . . , Xm].

A. Distributed Graph Hashing Model

Since the data points are distributed across multiple agents,
it is difficult to construct a neighborhood graph matrix, such as
the matrix W = [Wi,j]n×n in (1), for modeling the distributed
graph hashing, due to unacceptable communication and com-
putation cost. Inspired by [8], we choose to construct an anchor
point-based graph matrix instead of the neighborhood graph
matrix, and we will show that such a graph matrix can be
computed and stored in a distributed manner with moderate
communication and computation cost. To achieve this, we need
to select q (q � n) representative anchor points {aj}q

j=1 from
the whole data points distributed across multiple agents. A
simple way is that each agent l randomly chooses ql data points
from the local dataset as local anchor points, and broadcasts

them beforehand. The total number of all the anchor points
is q = ∑m

l=1 ql. For better performance, to make the anchor
points be more representative of the whole data points, a more
efficient way is using the method of distributed vector quanti-
zation [54], [55] to generate the anchor points. The distributed
vector quantization method generates more anchor points in
the high-density region and less in the low-density region of
the whole dataset, which is more reasonable, though it con-
sumes more computing resources. When the anchor points are
obtained, we use them to construct a graph matrix W̃ ∈ R

n×q

measuring the similarity between the training data points and
the anchor points, where W̃i,j = exp(−‖xi−aj‖2/ε). The graph
matrix W̃ can be represented as a concatenation of local graph
matrices, i.e., W̃ = [W̃1; W̃2; · · · ; W̃m], where W̃l ∈ R

nl×q is
the local graph matrix of agent l, and

W̃l
i,j = exp(−‖xl

i − aj‖2/ε). (2)

The local graph matrix W̃l can be independently computed
by agent l, and the time complexity for each agent l to com-
pute W̃l is moderate, which satisfies the requirement of the
distributed setting.

After constructing the graph matrix, we train binary hash
codes by solving the following problem:

min{yi,bj}

n∑

i=1

q∑

j=1

W̃i,j‖yi − bj‖2

s.t. yi ∈ {−1, 1}c, bj ∈ {−1, 1}c

n∑

i=1

yi = 0

1

n

n∑

i=1

yiy
T
i = I (3)

where yi is the binary code of the data point xi, and bj is the
binary code of the anchor point aj. Note that ‖yi‖2 = ‖bj‖2 =
c for all i, j, then the objective function of problem (3) can be
replaced by

∑n
i=1

∑q
j=1 −W̃i,jyT

i bj. Let Y = [y1, y2, . . . , yn] ∈
R

c×n denote the code matrix of the whole data, and let B =
[b1, b2, . . . , bq] ∈ R

c×q denote the code matrix of the anchor
points. Then the above problem can be rewritten in a compact
matrix form as

min
Y,B

−tr
(
YW̃BT)

s.t. Y ∈ {−1, 1}c×n, B ∈ {−1, 1}c×q

Y1 = 0

YYT = nI. (4)

For each agent l, we use Yl := [yl
1, yl

2, . . . , yl
nl

] ∈ R
c×nl to

denote the local code matrix, whose columns are the binary
codes of the local data points in this agent. Then the code
matrix Y can be represented as a concatenation of local code
matrices, i.e., Y = [Y1, Y2, . . . , Ym]. Note that

YW̃ =
m∑

l=1

YlW̃l
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then the objective in (4) can be decomposed into several local
objectives, and problem (4) can be reformulated as

min
{Yl},B

m∑

l=1

−tr
(

YlW̃lBT
)

s.t. Yl ∈ {−1, 1}c×nl , B ∈ {−1, 1}c×q

Y1 = 0

YYT = nI. (5)

B. Hash Function

Since the dimension of the variables in (5) is very large, it
is difficult to directly learn binary codes Y by optimizing (5).
In addition, even problem (5) is solved, it is still unable to
efficiently encode into a novel query into binary code. Thus,
we aim to learn a c-dimensional hash function h(·). Then the
binary codes of the training data and a novel query can be
easily computed using the hash function. We define the hash
function as follows:

h(x) = sign(PTK(x)) (6)

where K(x) is a q-dimensional column vector defined as
K(x) = [φ(x; a1) − ν1, . . . , φ(x; aq) − νq]T. Here, φ(x; a) =
exp(−‖x − a‖2/σ) is an RBF (Gaussian) function, {aj}q

j=1 are
the q anchor points mentioned above, {νj}q

j=1 are biases, and
σ is the kernel width. The biases {νj} are typically set as
νj = ∑n

i=1 φ(xi; aj)/n, whose effect is to make the mapped
data K(x) zero centered, i.e.,

∑n
i=1 K(xi) = 0. The projection

matrix P = [p1, p2, . . . , pc] ∈ R
q×c projects the mapped data

K(x) onto the low dimensional space, and pi is assumed to
have unit norm, for all i = 1, 2, . . . c. Here, c can be any pos-
itive integer, which means that the hash function can generate
hash codes with any length.

To compute νj, each agent does not need to explicitly get all
the information of {φ(xi; aj)}n

i=1. Note that

νj =
n∑

i=1

φ
(
xi; aj

)
/n =

m∑

l=1

nl∑

i=1

φ
(

xl
i; aj

)
/

m∑

l=1

nl

so the agents only need to broadcast the quantity ϕl
j =

∑nl
i=1 φ(xl

i, aj) and the number of local data points nl to obtain
νj. Both ϕl

j and nl can be easily computed or obtained by
agent l independently. Moreover, if the data size n is known
in advance, then the network only needs to broadcast {ϕl

j}.
Similar formulations as (6) are widely used as the kernel hash
functions in the literature, such as SGH [31], KSH [32]. Such
hash functions are demonstrated to have better performance
than linear hash functions, especially when the data is linearly
inseparable [32].

Using the hash function, the binary code of a train-
ing data point or a query x can be easily computed
by y = h(x) = sign(PTK(x)). So we have Yl =
sign(PTK(Xl)), and similarly B = sign(PTK(A)), where
K(Xl) = [K(xl

1), K(xl
2), . . . , K(xl

nl
)] ∈ R

q×nl is the RBF
mapping of all the training data in Xl, and K(A) =
[K(a1), K(a2), . . . , K(aq)] ∈ R

q×q is the RBF mapping of
all the anchor points. By substituting h(·) into (5), the

whole problem can be formulated as the following distributed
optimization problem with respect to P:

min
P

m∑

l=1

−tr
(

sign
(

PTK
(

Xl
))

W̃lsign
(
PTK(A)

)T
)

s.t. sign
(
PTK(X)

) ∗ 1 = 0

sign
(
PTK(X)

) ∗ sign
(
PTK(X)

)T = nI (7)

where K(X) = [K(X1), K(X2), . . . , K(Xm)] ∈ R
q×n.

C. Problem Relaxation

It is difficult to directly solve problem (7), since the objec-
tive function is nondifferentiable, and the constraints make
the problem NP hard [4]. A tractable solution is to relax
the problem, including both the objective function and the
constraints.

Wang et al. [22] proved that the binary codes satisfying
the balance constraint is equivalent to the hash function with
maximum variance on data X. However, the variance of the
hash function is difficult to compute, for the existence of the
nondifferentiable sign(·) function. According to [22], the max-
imum variance of a hash function is lower bounded by the
scaled variance of the projected data. So we choose to directly
maximize the variance of the projected data PTK(x). Since
K(x) is zero centered, i.e., E[PTK(x)] = 0, the variance of the
projected data can be expressed as

var
[
PTK(x)

] = 1

n
tr
[
PTK(X)K(X)TP

]
. (8)

Applying the same relaxation method in [22], problem (7) can
be relaxed as

min
P

m∑

l=1

−tr
[(

PTK(Xl)
)

W̃l(PTK(A)
)T

]

− η

n
tr
[
PTK(X)K(X)TP

]

s.t. PTP = I (9)

where η is a positive scalar weighting the variance-based regu-
larization term, and the bits uncorrelation constraint is relaxed
as the projection matrix P to be orthogonal. The detailed relax-
ation process and related proof can be found in [22]. Note
that

K(X)K(X)T =
m∑

l=1

K
(

Xl
)

K
(

Xl
)T

so the second term of the objective function in (9) can be
decomposed as

tr
[
PTK(X)K(X)TP

] =
m∑

l=1

tr

[

PTK
(

Xl
)

K
(

Xl
)T

P

]

.

Then the objective function in (9) can be expressed as the sum
of local objective functions

J(P) =
m∑

l=1

tr
(

PTSlP
)

with

Sl = −K
(
Xl)W̃lK(A)T − η′K

(
Xl)K

(
Xl)T

(10)
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where η′ = η/n. Here, Sl is only known by agent l. After
problem relaxation, our aim now is to solve the following
problem:

min
P

m∑

l=1

tr
(

PTSlP
)

s.t. PTP = I. (11)

Note that Sl is not necessarily a positive semidefinite matrix,
so the local objective functions in (11) are not necessarily con-
vex with respect to P. Moreover, due to the nonlinear equality
constraint, problem (11) is a nonconvex optimization problem,
so that the conventional distributed gradient methods are not
suitable for solving this problem. In next section, we will show
that problem (11) can be transformed into an equivalent bi-
convex optimization problem. Then we can devise distributed
ADMM algorithms to solve this problem.

IV. DISTRIBUTED ALGORITHM

ADMM is not only suitable for solving convex optimization
problems, but also suitable for solving bi-convex optimization
problems having convex (or bi-convex) objective functions
and bi-affine constraints [46]. In this section, we show that
the nonconvex optimization problem (11) can be rewrit-
ten as equivalent bi-convex problems, then we propose two
distributed ADMM algorithms for solving this problem.

A. SDH: Sequential Distributed Hash Algorithm

Before giving the algorithm, we make some uninfluen-
tial but useful modifications to problem (11). Let Ml =
(Sl + SlT)/2,∀l ∈ V , so {Ml} are all real symmetric matrices.
Since tr(PTSlP) = tr(PTSlTP), for all l, then problem (11) is
equivalent to the following problem:

min
P

m∑

l=1

tr
(

PTMlP
)

s.t. PTP = I. (12)

Let μl be the smallest eigenvalue of Ml. Since {Ml} are all real
symmetric matrices, {μl} are all real numbers. Let Ql = Ml if
μl ≥ 0, and Ql = Ml − μlI if μl < 0, for all l, so {Ql} are all
positive semidefinite and real symmetric matrices. It is easy to
see that optimizing problem (12) is equivalent to optimizing

min
P

m∑

t=1

tr
(

PTQlP
)

s.t. PTP = I. (13)

Since {Ql} are all positive semidefinite matrices, the local
objective functions in (13) are all convex with respect to
the optimized variable P. Note that the network is strongly
connected, then problem (13) is completely equivalent to the
following bi-convex optimization problem:

min
m∑

l=1

tr
(

Pl
TQlPl

)

s.t. Pl = Pt, PT
l Pt = I, ∀l ∈ V, t ∈ Nl (14)

where Pl are local variables, and Pl = Pt are consensus con-
straints, for all l ∈ V, t ∈ Nl. The augmented Lagrangian
function of (14) is

Lρ

({Pl}, {	l,t}, {
l,t}
)

=
m∑

l=1

tr
(

Pl
TQlPl

)
+

m∑

l=1

∑

t∈Nl

tr
(
	T

l,t(Pl − Pt)
)

+
m∑

l=1

∑

t∈Nl

ρ

2
‖Pl − Pt‖2

F +
m∑

l=1

∑

t∈Nl

tr
(

T

l,t

(
PT

l Pt − I
))

+
m∑

l=1

∑

t∈Nl

ρ

2
‖PT

l Pt − I‖2
F (15)

where 	l,t are the Lagrange multipliers corresponding to the
constraints Pl = Pt, 
l,t are the Lagrange multipliers corre-
sponding to the constraints PT

l Pt = I, for all l ∈ V, t ∈ Nl,
and ρ > 0 is a penalty parameter. ADMM minimizes Lρ by
using the following updates:

Pk+1
1 = arg min

P1
Lρ

(
P1, Pk

2, . . . , Pk
m,

{
	k

l,t

}
,
{

k

l,t

})

Pk+1
2 = arg min

P2
Lρ

(
Pk+1

1 , P2, Pk
3, . . . , Pk

m, {	k
l,t}, {
k

l,t}
)

...

Pk+1
m = arg min

Pm
Lρ

(
Pk+1

1 , . . . , Pk+1
m−1, Pm, {	k

l,t}, {
k
l,t}

)

	k+1
l,t = 	k

l,t + ρ
(

Pk+1
l − Pk+1

t

)
, ∀l ∈ V, t ∈ Nl


k+1
l,t = 
k

l,t + ρ

((
Pk+1

l

)T
Pk+1

t − I

)

, ∀l ∈ V, t ∈ Nl

(16)

where k ≥ 0 is the iteration step. For convenience, define the
sets

Wl = {t|t ∈ Nl, t < l}
and

Ul = {t|t ∈ Nl, t > l}.
Neglecting the irrelevant terms, to obtain Pk+1

l , agent l needs
to solve the following subproblem:

min
Pl

tr
(

PT
l QlPl

)
+

∑

t∈Nl

tr

((
	k

l,t

)T
Pl

)

−
∑

t∈Nl

tr

((
	k

t,l

)T
Pl

)

+
∑

t∈Wl

tr

((

k

l,t

)T
PT

l Pk+1
t

)

+
∑

t∈Ul

tr

((

k

l,t

)T
PT

l Pk
t

)

+
∑

t∈Wl

tr

((

k

t,l

)T(
Pk+1

t

)T
Pl

)

+
∑

t∈Ul

tr

((

k

t,l

)T(
Pk

t

)T
Pl

)

+ ρ
∑

t∈Wl

∥
∥
∥Pl − Pk+1

t

∥
∥
∥

2

F
+ ρ

∑

t∈Ul

∥
∥
∥Pl − Pk

t

∥
∥
∥

2

F

+ ρ
∑

t∈Wl

∥
∥
∥PT

l Pk+1
t − I

∥
∥
∥

2

F
+ ρ

∑

t∈Ul

∥
∥
∥PT

l Pk
t − I

∥
∥
∥

2

F
. (17)

Though the above problem seems complicate, it is a con-
vex optimization problem. Taking the derivative of (17) with
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respect to Pl, and setting the derivative to zero, we get a
closed-form solution Pk+1

l = (Ck
l )

−1Ek
l , where

Ck
l = 2Ql + 2ρ|Nl|I + 2ρ

∑

t∈Wl

Pk+1
t

(
Pk+1

t

)T

+ 2ρ
∑

t∈Ul

Pk
t

(
Pk

t

)T
(18)

and

Ek
l = −

∑

t∈Nl

	k
l,t +

∑

t∈Nl

	k
t,l + 4ρ

∑

t∈Wl

Pk+1
t

+ 4ρ
∑

t∈Ul

Pk
t −

∑

t∈Wl

Pk+1
t

((

k

l,t

)T + 
k
t,l

)

−
∑

t∈Ul

Pk
t

((

k

l,t

)T + 
k
t,l

)

. (19)

The matrix Ck
l is positive definite and invertible, since ρ > 0

and Ql, Pk+1
t (Pk+1

t )T, Pk
t (P

k
t )

T are all positive semidefinite.
The update iteration can be greatly simplified. Let all the

Lagrange multipliers be initialized to zeros. By mathematical
induction, we have that (
k

l,t)
T = 
k

t,l, for all l ∈ V, t ∈ Nl.
Define 	l = ∑

t∈Nl
	l,t − ∑

t∈Nl
	t,l, for all l ∈ V . Then (19)

can be simplified as

Ek
l = −	k

l − 2
∑

t∈Wl

Pk+1
t 
k

t,l − 2
∑

t∈Ul

Pk
t 


k
t,l

+ 4ρ
∑

t∈Wl

Pk+1
t + 4ρ

∑

t∈Ul

Pk
t (20)

and the updates in (16) can be simplified as

Pk+1
l =

(
Ck

l

)−1
Ek

l (21a)

	k+1
l = 	k

l + 2ρ
∑

t∈Nl

(
Pk+1

l − Pk+1
t

)
(21b)


k+1
t,l = 
k

t,l + ρ

((
Pk+1

t

)T
Pk+1

l − I

)

(21c)

for all l ∈ V , and t ∈ Nl. The update (21a), (21b), (21c) can be
independently finished by agent l with moderate communica-
tion with its neighbors, which satisfies the distributed setting.
We summarize the whole process in Algorithm 1. In practice,
we can simply initialize Pl by random Gaussian matrix for
each l ∈ V .

B. PDH: Parallel Distributed Hash Algorithm

SDH updates the local estimates {Pl} in a cyclic mode.
In this section, we propose a PDH algorithm to learn hash
functions.

We give a new equivalent bi-convex formulation of (11), as
follows:

min
m∑

l=1

tr
(

Pl
TQlPl

)

s.t. Pl = Zl,t, Zl,t = Pt, ∀l ∈ V, t ∈ Nl

PT
l Zl,t = I, ZT

l,tPt = I, ∀l ∈ V, t ∈ Nl (22)

Algorithm 1 SDH Algorithm
Initialization Each agent l obtains ql anchor points and
broadcasts them. Then each agent l computes and broad-
casts {ϕl

j}q
j=1, nl. Set the penalty parameter ρ appropriately.

Set 	0
l = 0 and 
0

t,l = 0, ∀t ∈ Nl. Initialize the starting point
P0

l by a random Gaussian matrix for each l ∈ V . Set k = 0.

1: Each agent l computes W̃l according to (2).
2: Each agent l constructs K(Xl) and K(A).
3: Each agent l computes Sl according to (10).
4: Each agent l computes Ql.
5: repeat
6: for l = 1, 2, · · · , m [in order] do
7: Compute Ck

l and Ek
l using (18) and (20).

8: Compute Pk+1
l using (21a).

9: Transmit Pk+1
l to the neighbors in agent l.

10: end for
11: for all l = 1, 2, · · · , m [in parallel] do
12: Compute 	k+1

l by (21b).

13: Compute 
k+1
t,l by (21c), ∀t ∈ Nl.

14: end for
15: k = k + 1.
16: until Termination criterion satisfied.
17: Output
18: Randomly choose an agent l and the value of Pl is the

optimal projection matrix P.

where {Zl,t} are auxiliary variables decoupling the local vari-
able at agent l from those of its neighbors t ∈ Nl. Let 	1,l,t and
	2,l,t, respectively, be the Lagrange multipliers corresponding
to the constraints Pl = Zl,t and Zl,t = Pt, ∀l ∈ V, t ∈ Nl.
Let 
1,l,t and 
2,l,t, respectively, be the Lagrange multipliers
corresponding to the constraints PT

l Zl,t = I and ZT
l,tPt = I,

∀l ∈ V, t ∈ Nl. The augmented Lagrangian function of (22) is
formulated as

Lρ

({Pl}, {Zl,t},
{
	1,l,t,	2,l,t

}
,
{

1,l,t, 
2,l,t

})

=
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tr
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)
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[
tr
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	T
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(
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)) + tr
(
	T
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(
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))]

+ ρ

2

m∑
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∑

t∈Nl

(
‖Pl − Zl,t‖2

F + ‖Zl,t − Pt‖2
F

)

+
m∑

l=1

∑

t∈Nl

[
tr
(

T

1,l,t

(
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l Zl,t − I
)) + tr

(

T

2,l,t

(
ZT

l,tPt − I
))]

+ ρ

2
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l=1

∑

t∈Nl

(
‖PT

l Zl,t − I‖2
F + ‖ZT

l,tPt − I‖2
F

)
. (23)

Also, let all the Lagrange multipliers be initialized to zeros.
Following the ADMM rule, the variables {Pl}, {Zl,t} and
multipliers {	1,l,t,	2,l,t}, {
1,l,t, 
2,l,t} are updated as fol-
lows: for all l ∈ V, t ∈ Nl

Pk+1
l =

(
C̃k

l

)−1
Ẽk

l (24a)
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Zk+1
l,t =

(
Gk

l,t

)−1
Hk

l,t (24b)

	k+1
1,l,t = 	k

1,l,t + ρ
(

Pk+1
l − Zk+1

l,t

)
(24c)

	k+1
2,l,t = 	k

2,l,t + ρ
(
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l,t − Pk+1

t

)
(24d)


k+1
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k

1,l,t + ρ

((
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l

)T
Zk+1

l,t − I

)

(24e)


k+1
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k

2,l,t + ρ

((
Zk+1

l,t

)T
Pk+1

t − I

)

(24f)

where

C̃k
l = 2Ql + 2ρ|Nl|I + ρ

∑

t∈Nl

(

Zk
l,t

(
Zk

l,t

)T + Zk
t,l

(
Zk

t,l

)T
)

(25)

Ẽk
l = −

∑

t∈Nl

(
	k

1,l,t − 	k
2,t,l

)
+ 2ρ

∑

t∈Nl

(
Zk

l,t + Zk
t,l

)

−
∑

t∈Nl

(

Zk
l,t

(

k

1,l,t

)T + Zk
t,l


k
2,t,l

)

(26)

Gk
l,t = 2ρI + ρ

(

Pk+1
l

(
Pk+1

l

)T + Pk+1
t

(
Pk+1

t

)T
)

(27)

and

Hk
l,t = 	k

1,l,t − 	k
2,l,t + 2ρ

(
Pk+1

l + Pk+1
t

)

−
(

Pk+1
l 
k

1,l,t + Pk+1
t

(

k

2,l,t

)T
)

. (28)

The whole process is described in Algorithm 2. Also,
in practice, we simply initialize the variables by random
Gaussian matrices. PDH algorithm updates variables in par-
allel, so it has better time efficiency than SDH. However,
the communication, computational, and storage complexities
of PDH are higher than those of SDH. So SDH con-
sumes less resources, and is more suitable for low-cost
networks.

Remark 1: The theoretical convergence property of the
ADMM update rule for the nonconvex optimization is an
open question [46]. Like the exiting distributed LH algorithm
DisH [50], the algorithms proposed in this paper are also
not guaranteed to reach the global optimum. However, in the
experiment section, we will empirically show that the proposed
algorithms can fast converge to a local minimum, and we also
verify the consistency of local projection variables {Pl} learned
by different agents.

V. COMPLEXITY ANALYSIS

In this section, we give the communication and computa-
tional complexity analyses of the proposed two algorithms.
Before giving the analysis, we first recall all the related quan-
tities mentioned in this paper: the number of the agents m, the
dimensionality of the data d, the number of the anchor points
ql selected by agent l, the number of the total anchor points
q, the length of the code c, the size of the data in the lth
agent nl, the degree of the lth agent |Nl|. Among these quan-
tities, only nl is large, and the others are all much smaller
than nl.

Algorithm 2 PDH Algorithm
Initialization Each agent l obtains ql anchor points and
broadcasts them. Then each agent l computes and broad-
casts {ϕl

j}q
j=1, nl. Set the penalty parameter ρ appropriately.

Set 	0
1,l,t = 	0

2,l,t = 	0
2,t,l = 0, ∀t ∈ Nl. Set 
0

1,l,t = 
0
2,l,t =


0
2,t,l = 0, ∀t ∈ Nl. Initialize the starting points P0

l , Z0
l,t by

random Gaussian matrices, ∀l ∈ V . Set k = 0.

1: Each agent l computes Wl according to (2).
2: Each agent l constructs K(Xl) and K(A).
3: Each agent l computes Sl according to (10).
4: Each agent l obtains Ql from Sl.
5: repeat
6: for all l = 1, 2, · · · , m [in parallel] do
7: Compute C̃k

l and Ẽk
l using (25) and (26).

8: Compute Pk+1
l using (24a).

9: Transmit Pk+1
l to the neighbors of agent l.

10: end for
11: for all l = 1, 2, · · · , m [in parallel] do
12: Compute Gk

l,t, Hk
l,t using (27) and (28), ∀t ∈ Nl.

13: Compute Zk+1
l,t using (24b), ∀t ∈ Nl.

14: Send Zk+1
l,t to agent t, ∀t ∈ Nl.

15: end for
16: for all l = 1, · · · , m [in parallel] do
17: Compute 	k+1

1,l,t by (24c), ∀t ∈ Nl.
18: Compute 	k+1

2,l,t,	
k+1
2,t,l by (24d), ∀t ∈ Nl.

19: Compute 
k+1
1,l,t by (24e), ∀t ∈ Nl.

20: Compute 
k+1
2,l,t , 


k+1
2,t,l by (24f), ∀t ∈ Nl.

21: end for
22: k = k + 1.
23: until Termination criterion satisfied.
24: Output
25: Randomly choose an agent l, the value of Pl is the

optimal projection matrix P.

Both the communication and computational complexi-
ties consist of two parts: 1) the initialization stage and
2) the main procedure. All the operations executed before
the main iteration begins are seen as the initialization
stage.

A. Communication Complexity

SDH: In the initialization stage, each agent l needs to broad-
cast its local anchor points. The communication complexity of
this step is O(qld(m − 1)). Then each agent l needs to broad-
cast {ϕl

j}q
j=1 to obtain the bias {νj}q

j=1. The communication
complexity of this step is O(q(m − 1)). In the main proce-
dure, at each iteration, each agent l needs to transmit Pl to its
neighbors. The complexity of this step is O(qc|Nl|). The total
communication complexity of SDH is independent of the data
size nl.

PDH: In the initialization stage, PDH has the same commu-
nication complexity as SDH. In the main procedure, at each
iteration, each agent l should transmit Pl to its neighbors. The
complexity of this step is O(qc|Nl|). In addition, after com-
puting the auxiliary variables Zl,t, each agent l needs to send
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TABLE I
COMMUNICATION AND COMPUTATIONAL COMPLEXITIES OF SDH AND PDH

Zl,t to its neighbor agent t. The complexity of this step is also
O(qc|Nl|). The overall communication complexity of PDH is
higher than SDH, but is still independent of the data size nl.

As a result, both of the two algorithms have moderate
communication complexities, which are independent of nl.

B. Computation Complexity

SDH: In the initialization stage, for each agent l, the total
complexity of initializing Wl, K(Xl), and K(A) is O(dqnl +
dqnl +dq2). The complexity of computing Sl is O(2nlq2 +q3)

and the complexity of computing Ql is O(q3). In the main
procedure, for each agent l, at each iteration, the time com-
plexity to compute Cl and El is O(q2c|Nl|+c2q|Nl|). Then the
time complexity to compute Pl using Cl and El is O(q3). The
time complexity of updating all the multipliers is O(qc2|Nl|).
In summary, in the initialization stage, the time complexity of
SDH at each agent is O(nl), linear in the data size nl, and in the
main procedure, the time complexity of SDH is independent
of nl. Therefore, SDH is scalable.

PDH: In the initialization stage, PDH has the same time
complexity as SDH. In the main procedure, for each agent l,
at each iteration, the time complexity to compute C̃l and Ẽl is
O(q2c|Nl|+c2q|Nl|). The complexity to compute Pl is O(q3).
The time complexity to compute all the matrix parameters Gl,t

and Hl,t is O(q2c|Nl|+c2q|Nl|). The complexity to compute all
the auxiliary variables Zl,t is O(q3|Nl|). The time complexity
of updating all the multipliers is O(qc2|Nl|). In summary, in
the initialization stage, the time complexity of PDH at each
agent is O(nl), linear in the data size nl, and in the main
procedure, the time complexity of PDH is independent of nl.
Though the time complexity of PDH is higher than that of
SDH, it is still moderate, and PDH is also scalable.

Compared with SDH, PDH consumes more communication
and computing resources. In order to store auxiliary vari-
ables, PDH also requires more storage resource. However,
PDH enables all the agents to update the variables in par-
allel, while SDH can only update the variables one by one. In
summary, PDH is more time efficient, while SDH consumes
less resource.

We list the primary computational and communication
complexities of SDH and PDH in detail in Table I.

VI. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed algorithms by numerical experiments on the problem
of image retrieval. In all the experiments, we assume that the
data is distributed across a connected network that consists of
ten agents and with probability 0.4 a pair of agents are con-
nected to be neighbors. The constructed network has 15 edges,
and the maximum degree is 5, as shown in Fig. 1.

We apply our algorithms on four benchmarks:
1) CIFAR-10 [33]; 2) GIST-1M [50]; 3) NUS-WIDE [8]; and
4) TINY-80M [9]. The scale of the first one is relatively small,
and the others are all large-scale. The penalty parameter ρ

depends on the scale of the training data size, and usually a
large value of ρ makes the algorithms have better convergence
properties. In the following, we empirically set η′ = 5 and
ρ = 1e10.

As for the anchor points, generally, the hash function with
more anchor points can have better performance and we usu-
ally choose more anchor points for larger dataset to better
represent the distribution of the whole data. On the other
hand, the anchor points will bring additional computation and
a moderate number of the anchor points are usually enough
to ensure the performance. In real applications, according to
the allowable computing resource, one can choose 500–5000
anchor points for training the hash functions. In the following
examples, the dataset in Example 1 is relatively small, and we
choose 500 anchor points. In the other examples, the datasets
are all large-scale, and we choose 1000 anchor points.

All the results below are averaged over 50 independent runs.

A. Results on CIFAR-10

In this example, we test the accuracy performance of the
proposed algorithms. We aim to verify that the proposed dis-
tributed algorithms are comparable to existing state-of-the-art
centralized methods, including PCAH [53], AGH [8], ITQ [3],
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TABLE II
MAP WITH DIFFERENT CODE SIZES ON CIFAR-10

ABQ [17], and SGH [31]. We also make a comparison with
the existing distributed LH method DisH [50] and DABQ [52]
to show the superiority of our methods.

We choose a relatively small benchmark: CIFAR-10 for this
experiment. The dataset of CIFAR-10 consists of 60K images
in ten classes, and each class has 6K images. Each image
is represented by a 512-D GIST descriptor extracted from a
32 × 32 color image. We randomly choose 1000 data points
as the query (test) set, and use the remaining data points for
training. Since each data point in CIFAR-10 is assigned a class
label, the ground truth neighbors of each query can be easily
determined based on label agreement. For DisH, DABQ, and
the proposed two distributed algorithms, we evenly divide the
training data into ten splits, and each agent collects 1 split. For
all compared centralized algorithms, we use a single agent to
collect all the training data for learning hash functions. For
SDH and PDH, we let each agent randomly select 50 data
points as local anchor points, so the number of anchor points is
500 in total. We use the Hamming ranking [8] based evaluation
for quantitative performance measurement. For each query, all
the data points in the database are ranked (from small to large)
according to their Hamming distance to the query.

Table II shows the Hamming ranking perfomance measured
by mean average precision (MAP). The code size c varies
from 64 to 256 bits. From Table II, we see that SDH and
PDH outperform the existing distributed hashing algorithms
DisH, DABQ, and most of the state-of-art centralized unsu-
pervised methods except the recently proposed graph hashing
method SGH, which demonstrates the effectiveness and effi-
ciency of the proposed methods. Note that the performance
of SDH and PDH is very close to that of SGH. It means that
the proposed distributed hashing algorithms do not lose much
quality compared with the existing centralized graph hashing
algorithms.

Then we report the complete precision-recall curves with
256 bits code in Fig. 2. From Fig. 2, we see that SGH and
the proposed PDH, SDH outperform other competitors with
a large margin, which is consistent with the results shown in
Table II.

We report the training time consumption in Table III. From
Table III, we see that PDH has the highest time efficiency,
and SDH takes the longer time than PDH, but is still effi-
cient. Though SDH is less time efficient, it consumes least
resource.

Fig. 2. Precision-recall curves with 256 bits on CIFAR-10.

TABLE III
TRAINING TIME ON CIFAR-10 (IN SECOND)

Fig. 3. Loss on CIFAR-10 using SDH and PDH. Both algorithms converge
within less than 20 iterations.

Next, we empirically show the convergence and consistency
performance of the proposed methods. We respectively choose
the Lagrangian functions (15) and (23) as the loss functions for
SDH and PDH to demonstrate the convergence of the proposed
algorithms. We plot the evolution curves of the loss functions
with 64 bits in Fig. 3. Fig. 3 shows that both SDH and PDH
converge within less than 20 iterations, which implies that both
of the proposed algorithms converge fast in practice.

To show the consistency of SDH and PDH, we define the
consistency coefficient

σ =
m∑

l=1

‖Pl − P̄‖2

where P̄ = (1/m)
∑m

l=1 Pl is the mean of P1, . . . , Pm. Note
that if σ = 0, then Pl equals to P̄, for all l, which means
P1, . . . , Pm achieve consensus. For both algorithms, we com-
pute the value of σ with 64 bits at each iteration, and we plot
the evolution curves of σ in Fig. 4. Fig. 4 shows that the value
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Fig. 4. Evolution of σ using SDH and PDH. The local estimates using SDH
achieve consensus within about 10 iterations, and the local estimates using
PDH achieve consensus within about 20 iterations.

Fig. 5. MAP results with respect to parameters ρ and η′ on CIFAR-10.

Fig. 6. MAP results with respect to different number of bits on CIFAR-10.

of σ using SDH approximates to 0 within about ten iterations,
and the value of σ using PDH approximates to 0 within about
20 iterations, which verifies the consistency of the proposed
algorithms. In addition, compared to PDH, SDH has better
consistency.

We investigate the sensitivity of the parameters ρ and η′.
The MAP results on CIFAR-10 with varying ρ and η′ are
shown in Fig. 5.

To clearly show the impact the of the code size, we report
the performance (MAP) of the distributed hashing methods
with respect to the number of the bits in Fig. 6, where the code
size c varies from 32-512 bits. We see that, as the number of
the bits increases, SDH and PDH show superior advantages
compared with DisH and DABQ.

B. Results on GIST-1M

Next, we measure the accuracy of the proposed algorithms
and the other methods on a large-scale dataset. The meth-
ods for comparison are the same as those in example A. The

TABLE IV
TOP-1000 MAP WITH DIFFERENT CODE SIZES ON GIST-1M

TABLE V
TRAINING TIME ON GIST-1M (IN SECOND)

benchmark for test is GIST-1M, which consists of one mil-
lion 960-D GIST descriptors extracted from random images.
We also randomly choose 1000 data points as query (test) set,
and use the remaining data points for training. Since the data
points in GIST-1M are not assigned labels, the ground truth is
defined as top 2% nearest neighbors in the training set accord-
ing to the Euclidean distance. Similar to the previous example,
for the distributed algorithms, the data points are evenly dis-
tributed across ten agents, and for centralized algorithms, all of
the data points are collected by a single agent. In this example,
each agent randomly selects 100 data points as its local anchor
points, and the total number of all anchor points is 1000. Since
the dataset of this example is large-scale and computing MAP
of the whole dataset is very slow, we only return top 1000
retrieved samples. The MAP result of top 1000 retrieved sam-
ples based on Hamming ranking is shown in Table IV. In this
example, DABQ performs quite well when the bit length is
short and the proposed SDH, PDH methods outperform DABQ
when the bit length is long. Later we will further show that as
the number of bits increases, the proposed SDH, PDH methods
will achieve better performance and show superior advantages
compared with DisH and DABQ. The training time consump-
tion is shown in Table V. We see that the proposed algorithms
are also time efficient in the large-scale application, especially
for PDH, compared with other distributed hashing methods.

Then we plot the precision curves with respect to top 1000
retrieved images with 256 bits code in Fig. 7 to further show
the performance of the proposed methods.

We report the performance (Top-1000 MAP) of the dis-
tributed hashing methods with respect to the number of the
bits in Fig. 8. We see that as the number of the bits increases,
SDH and PDH clearly surpass DisH and DABQ. That is in line
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Fig. 7. Precision curves with top 1000 retrieved images with 256 bits on
GIST-1M.

Fig. 8. Top-1000 MAP results with respect to different number of bits on
GIST-1M.

with the characteristic of graph hashing, which has superior
accuracy compared with other methods when the code length
is long.

C. Results on NUS-WIDE

We further test the distributed hashing methods DABQ,
DisH, SDH, and PDH on the large-scale dataset NUS-WIDE,
which contains around 270 000 Web images associated with 81
ground truth concept labels and each image contains multiple
semantic labels. All the images are represented by 500-D bag-
of-words features. Two images are defined as neighbors if they
share at least one label. We collect 21 most frequent labels and
for each label, we randomly select 100 images for the query
set. So the query set totally has 2100 images. The remaining
images are for the training set. We divide the training data
points evenly across 10 agents and randomly select 100 data
points at each agent as local anchor points, so we totally have
1000 anchor points. We report the Top-1000 MAP result with
different code sizes in Fig. 9. The code sizes varies from 32 to
512 bits. For DABQ, SDH, and PDH, they can generate hash
codes of any length, while for DisH, the code size cannot be
larger than the dimension of the original data, i.e., 500, so
we do not give the MAP result of DisH with 512 bits. From
the figure, we see that the proposed SDH and PDH still per-
form well compared with other distributed hashing methods,
especially for the long-bit codes.

Fig. 9. Top-1000 MAP results with respect to different number of bits on
NUS-WIDE.

Fig. 10. Precision curves with top 1000 retrieved images with 256 bits on
NUS-WIDE.

Then we further illustrate the advantage of the proposed
methods by the precision curves with respect to top 1000
retrieved images with 256 bits code, shown in Fig. 10.

D. Results on TINY-80M

At last, we test the distributed hashing methods DisH,
DABQ, and the proposed SDH, PDH on a much larger dataset
TINY-80M, which consists of 80 million 384-D GIST features.
We randomly select 1M data points from the database as the
training set and select 1000 queries from the database as the
testing set. The ground truth is defined as 5000 nearest neigh-
bors in the database according to the Euclidean distance. We
divide the training data points evenly across 10 agents and
randomly select 100 data points at each agent as local anchor
points, so we totally have 1000 anchor points. Fig. 11 shows
the Top-1000 MAP results with respect to different code sizes.
The code size varies from 32 to 512 bits. For DisH, the code
size cannot be larger than the dimension of the original data, so
we also do not give the MAP result with 512 bits using DisH.
Similar to the previous examples, the proposed SDH and PDH
algorithms perform well and show superior advantages when
the bit length is long.

We further use this large-scale example to investigate the
impact of the training data size on the performance of the
proposed methods. We report the performance (Top-1000
MAP) of the proposed algorithms with respect to different
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Fig. 11. Top-1000 MAP results with respect to different number of bits on
TINY-80M.

Fig. 12. Top-1000 MAP results with respect to different training data sizes
with 256 bits on TINY-80M.

training data sizes with 256 bits in Fig. 12. The size of the
training data varies from 1K to 80M. We see that the proposed
SDH, PDH algorithms have better performance when more
training data points are used. In addition, the proposed algo-
rithms can still have good performance even with very small
training data set, so we can use them to solve large-scale
retrieval problems if only a small number of training data
points are available.

VII. CONCLUSION

In this paper, we designed a novel distributed hashing model
based on graph hashing. We proposed two algorithms to learn
efficient hash functions in a distributed manner. The proposed
hashing method is suitable for arbitrary network, as long as it
is connected. Both of the proposed algorithms were demon-
strated to be scalable and have good performance, compared
with the existing state-of-art methods.
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