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a b s t r a c t

The Kernel method is a powerful tool for extending an algorithm from linear to

nonlinear case. Metalearning algorithm learns the base learning algorithm, thus to

improve performance of the learning system. Usually, metalearning algorithms exhibit

faster convergence rate and lower Mean-Square Error (MSE) than the corresponding

base learning algorithms. In this paper, we present a kernelized metalearning algo-

rithm, named KIMEL, which is a metalearning algorithm in the Reproducing Kernel

Hilbert Space (RKHS). The convergence analyses of the KIMEL algorithm are performed

in detail. To demonstrate the effectiveness and advantage of the proposed algorithm, we

firstly apply the algorithm to a simple example of nonlinear channel equalization. Then

we focus on a more practical application in blind Image Quality Assessment (IQA).

Experimental results show that the KIMEL algorithm has superior performance.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Metalearning means learning of the base learning system,
hence to improve the performance of the base learning
system. The Delta-Bar-Delta (DBD) algorithm [1] is one of
the most well-known metalearning algorithms, which con-
sists of a weight update and a learning rate update both
based on the delta rule. In [2], as an extension of the DBD
algorithm, the Incremental Delta-Bar-Delta (IDBD) algorithm
was presented, which is applicable to incremental tasks, that
is, supervised learning tasks in which the examples are
processed one-by-one and then discarded. In the IDBD, both
the weight update rule and the learning rate update rule are
derived by gradient descent. The base learning algorithm in
the IDBD is the well-known Least-Mean-Square (LMS) algo-
rithm. It was shown that, compared with the LMS, the IDBD
exhibits faster convergence rate and lower Mean-Square
Error (MSE). Besides, the IDBD is biologically plausible, and
can play the role of a nervous metaplasticity model [3].
ll rights reserved.
However, both the LMS and the IDBD algorithms are
developed for the simple, linear learning systems. If the
mapping between output and input is highly nonlinear,
both algorithms get poor performance. The kernel method
is a powerful tool to overcome this limitation. The kernel
method firstly transforms the input data into a high-
dimensional feature space via a reproducing kernel such
that the inner product operation in the feature space can
be computed efficiently through the kernel evaluations.
Then, appropriate linear methods are applied to the
transformed data. The Kernelized version of the Least-
Mean-Square algorithm (KLMS) was proposed in [4].
Kernel adaptive filtering algorithms were systematically
introduced in [5]. It is a natural question whether we can
combine the kernel method and the IDBD algorithm to
present a kernelized version of the IDBD or a similar
algorithm, so that it is applicable to nonlinear learning
systems. In this paper, inspired by the idea of the IDBD,
we derive a Kernel Incremental MEtaLearning (KIMEL)
algorithm. We perform convergence analysis of the algo-
rithm in detail. Note that the KIMEL algorithm is not
simply the KLMS with a variable step-size. Since the
learning-rate update depends on the inputs of the system,
it is also computed in RKHS.
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Since the IDBD algorithm can be seen as a Variable
Step-Size (VSS) LMS algorithm, it is appropriate to com-
pare the performance of the KIMEL algorithm with that of
other kernelized VSS-LMS algorithms. Many researchers
have proposed variable step-size algorithms based on the
standard LMS weight update recursion, such as [13–16].
The robust VSS-LMS algorithm proposed in [14] is one of
the well-known and successful VSS-LMS algorithms.
In this paper, we compare the performance of the KIMEL
with that of the Kernelized version of this VSS-LMS (KVSS-
LMS). Note that, although the KVSS-LMS is actually also
derived by us in this paper, we treat it as a competing
algorithm.

Automatical assessment of perceptual image quality is
critical for amounts of image processing applications. It is
becoming increasingly important. The KIMEL algorithm
proposed in this paper is excellent in solving nonlinear
fitting or regression problems, which can be used to
construct good approximation of the function relationship
between the input and output data. The blind Image
Quality Assessment (IQA) problem based on the machine
learning can be seen as constructing a relationship
between the distorted images and the final scores [31].
Thus, the KIMEL algorithm is applicable to the blind IQA
problem. In this paper, we perform this study. The
performance of the KIMEL algorithm is tested on the LIVE
IQA database [41] and is compared with that of the KLMS
algorithm, the KVSS-LMS algorithm, and the recent NR
IQA algorithms in [31,32,38]. The Spearman Rank-Order
Correlation Coefficient (SROCC), the (Pearson’s) Linear
Correlation Coefficient (LCC), and the Root MSE (RMSE)
are used to evaluate the performance of these algorithms.
Experimental results show that the performance of the
proposed algorithm is superior to that of the competing
methods.

The paper is organized as follows. In Section 2, we
briefly introduce the IDBD algorithm, the kernel method,
as well as the KLMS algorithm to make the paper self-
contained, and present the KVSS-LMS algorithm for the
purpose of comparison. In Section 3, the KIMEL algorithm
is formulated and the convergence analyses are per-
formed. In Section 4, a simple application in nonlinear
channel equalization is presented to illustrate the effec-
tiveness and advantage of the proposed algorithm.
In Section 5, we apply the KIMEL algorithm to blind IQA
problem, which is a more practical application. Finally,
conclusions are drawn in Section 6.

2. Preliminary knowledge and algorithms for
comparison

In this paper, the KIMEL algorithm to be presented is
inspired by the IDBD algorithm [2] and based on the
famed kernel trick, thus in this section we briefly intro-
duce them, and two kernel algorithms as well, which will
be used for comparison in the application parts.

2.1. Incremental Delta-Bar-Delta algorithm

In [2], the IDBD algorithm was derived, which can be
regarded as a VSS-LMS algorithm with an individual step-size
parameter for each weight dimension and these parameters
change according to a metalearning process. The IDBD is
developed for learning linear systems. After defining the
input vector XðnÞ ¼ ½x1ðnÞ,x2ðnÞ, . . . ,xNðnÞ�

T , the weight vector
WðnÞ ¼ ½w1ðnÞ,w2ðnÞ, . . . ,wNðnÞ�

T , and the desired output
d(n), the output of the linear system can be expressed as
yðnÞ ¼WðnÞT XðnÞ ¼

PN
i ¼ 1 wiðnÞxiðnÞ and the estimation

error can be expressed as eðnÞ ¼ dðnÞ�yðnÞ. The procedure
of the algorithm is as follows:

biðnþ1Þ ¼ biðnÞþyeðnÞxiðnÞhiðnÞ,

aiðnþ1Þ ¼ ebiðnþ1Þ,

wiðnþ1Þ ¼wiðnÞþaiðnþ1ÞeðnÞxiðnÞ,

hiðnþ1Þ ¼ hiðnÞ½1�aiðnþ1ÞxiðnÞ
2
�þ þaiðnþ1ÞeðnÞxiðnÞ, ð1Þ

where ½��þ is a half-rectified function. In this algorithm, the
step-size parameters ai of all weight dimensions have an
exponential relationship with the memory parameters bi,
which ensures ai a positive value and provides a mechanism
for making geometric steps in ai. Note that hi, an additional
per-input memory parameter, is a decaying trace of the
cumulative sum of recent changes to wi, thus, the increment
to bi is proportional to the correlation between the current
weight change eðnÞxiðnÞ and a trace of recent weight changes
hi(n). If the current step is positively correlated with past
steps, indicating that the past steps should have been larger,
the memory parameter bi, as well as the step-size ai, is
increased. If the current step is negatively correlated with
past steps, indicating that the past steps should have been
smaller, the memory parameter bi, as well as the step-size ai,
is decreased. The IDBD algorithm is a metalearning algorithm
in the sense that it learns the step-size parameter based on
previous learning experience.

It was shown that the IDBD algorithm outperforms the
ordinary LMS algorithm and in fact it finds the optimal
step-size parameters [2]. In IDBD, both the weight update
rule and the learning rate update rule are derived by
gradient descent, which is the origin of the ideology of our
new algorithm to be presented in the following.

2.2. Kernel method

In order to learn a nonlinear relationship by a linear
learning machine, a nonlinear feature set needs to be
chosen, that is to say, transform the input data into a
high-dimensional feature space using a certain nonlinear
mapping and then the linear learning machine is applied
in the feature space. Thus, the output of the learning
machine has the form

f ðxÞ ¼
XN

i ¼ 1

wijiðxÞ, ð2Þ

where x is the input data in original space, u : X-F is a
nonlinear mapping from the input data space to a certain
feature space, and wi is the ith weight component in the
feature space, assumed to have N dimensions.

An important characteristic of a linear learning machine
is that it can be expressed in dual [6], which means that the
weight of the linear learning machine can be expressed as a
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linear combination of the training data, i.e., w¼
Pl

j ¼ 1

ajyjuðxjÞ, where fuðxjÞ,yjg (j¼1,y,l) are the training exam-
ples and aj is the corresponding coefficient in the feature
space. Thus, the output of the linear learning machine can
be expressed by the inner product of the transformed test
data uðxÞ and training data uðxjÞ,

f ðxÞ ¼
Xl

j ¼ 1

ajyj/uðxjÞ,uðxÞS: ð3Þ

If the inner product /uðxiÞ, uðxÞS can be computed directly
in the feature space, we can construct a nonlinear learning
machine without exactly knowing the mapping. The well-
known kernel method is such a direct computing method.

A Mercer kernel [9,10] is a continuous, symmetric,
positive-definite function k: X�X-R, where X is the
input domain, a compact subset of RL. By the Mercer
theorem [9,10], any Mercer kernel kðx,x0Þ can be expanded
as follows,

kðx,x0Þ ¼
X1
i ¼ 1

BijiðxÞjiðx
0Þ, ð4Þ

where Bi and ji are the non-negative eigenvalues and
eigenfunctions, respectively. Therefore, a mapping u can
be constructed as

u : X-F, ð5aÞ

uðxÞ ¼ ½
ffiffiffiffiffi
B1
p

j1ðxÞ,
ffiffiffiffiffi
B2
p

j2ðxÞ, . . .�: ð5bÞ

By the construction of the mapping, an important implica-
tion is

uðxÞTuðx0Þ ¼ kðx,x0Þ: ð6Þ

Among all the kernels, the widely used ones are the
Gaussian kernel (7) and the polynomial kernel (8),

kðx,x0Þ ¼ expð�a0Jx�x0J2
Þ, ð7Þ

kðx,x0Þ ¼ ðxT x0 þ1Þp, ð8Þ

of which the Gaussian kernel has the feature vector with
infinite dimensionality and is implicitly known.

Based on the above theory, we can choose a Mercer
kernel to replace the inner product /uðxiÞ,uðxÞS, so as to
compute the equation (3) directly without knowing the
feature map.

2.3. Kernel Least-Mean-Square algorithm

In order to overcome the limitation of the ordinary LMS
algorithm in dealing with nonlinear problems, the Kernel
Least-Mean-Square (KLMS) algorithm was proposed in [4].
By the kernel-induced mapping (5), firstly transform the
input XðiÞ into RKHS as uðXðiÞÞ, then use the LMS algorithm
on the new example sequence fuðXðiÞÞ,dðiÞg. Let Wð1Þ ¼ 0,
then the learning procedure of the KLMS algorithm is as
follows:

yðnÞ ¼WðnÞTuðXðnÞÞ ¼ m
Xn�1

j ¼ 1

eðjÞkðXðjÞ,XðnÞÞ,

eðnÞ ¼ dðnÞ�yðnÞ,
Wðnþ1Þ ¼WðnÞþmeðnÞuðXðnÞÞ, ð9Þ

where m is the step-size parameter of the KLMS algorithm.
If a test input point Xn is given at iteration i, the output

of the system is

yn ¼ f ðXnÞ ¼ m
Xi

j ¼ 1

eðjÞkðXðjÞ,XnÞ: ð10Þ

2.4. Kernel variable step-size LMS algorithm

The robust variable step-size algorithm proposed in
[14] was proven to have fast convergence while ensure
small misadjustment. It was used by many researchers in
various applications. We briefly introduce the algorithm
and then derive its kernelized version, for the purpose of
comparison.

The weight update of the VSS-LMS algorithm [14] is

Wðnþ1Þ ¼WðnÞþmðnÞeðnÞXðnÞ, ð11Þ

where the variables are defined the same as those in
Section 2.1. The variable step size mðnÞ is adjusted by
using an estimation of the autocorrelation between e(n)
and eðn�1Þ,

mðnþ1Þ ¼ amðnÞþgp2ðnÞ,

pðnÞ ¼ bpðn�1Þþð1�bÞeðnÞeðn�1Þ, ð12Þ

where 0oao1, 0obo1 and g40. Usually, the value of
a is chosen to be close to 1 and g is small. In stationary
environment, b, which is an exponential weighting para-
meter, should be b� 1, and for nonstationary environ-
ment, bo1. The step size mðnþ1Þ is set to mmin or mmax

when it is below the lower bound or above the upper
bound. In general, the constant mmin is selected as a
compromise between steady-state misadjustment and
convergence rate; and the value of mmax is chosen near
the point of instability of the LMS algorithm to provide
the maximum possible convergence rate [13,14].

In describing the above VSS-LMS algorithm, a linear
finite impulse response filter is assumed. If the mapping
between output and input is highly nonlinear, poor
performance can be expected from the algorithm. To
overcome the limitation, we extend the algorithm to
RKHS to present a kernelized version. Here, we call the
kernelized algorithm KVSS-LMS.

The derivation of the KVSS-LMS algorithm is as follows.
Firstly, utilizing the Mercer theorem (4), we transform the
data XðnÞ into a high-dimensional feature space F as
uðXðnÞÞ. Denote uðnÞ ¼uðXðnÞÞ for simplicity. Then using
the VSS-LMS algorithm [14] on the new example sequence
fuðnÞ,dðnÞg yields

eðnÞ ¼ dðnÞ�WT
ðnÞuðnÞ,

Wðnþ1Þ ¼WðnÞþmðnÞeðnÞuðnÞ, ð13Þ

where WðnÞ denotes the estimate of the weight vector at
iteration n in F. By letting Wð1Þ ¼ 0 and using the weight
update equation repeatedly, we have

Wðnþ1Þ ¼
Xn

j ¼ 1

mðjÞeðjÞuðjÞ: ð14Þ
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However, u is only implicitly known, and its dimen-
sionality is high (infinite in the case of the Gaussian
kernel). So, we need an alternative way to carry out the
computation. Here, we adopt the same method as in the
derivation of the KLMS algorithm [4]. That is, when there
is a new input Xðnþ1Þ, the output yðnþ1Þ of the system
can be expressed in terms of inner products between
transformed inputs, then by the kernel trick (6), we can
efficiently compute the output through kernel evaluations

yðnþ1Þ ¼Wðnþ1ÞTuðnþ1Þ

¼
Xn

j ¼ 1

mðjÞeðjÞuðjÞTuðnþ1Þ

¼
Xn

j ¼ 1

mðjÞeðjÞkðj,nþ1Þ: ð15Þ

After detailed derivation, we found that the update rule of
the step-size parameter in the KVSS-LMS algorithm stays
the same as that in (12). Thus, by letting Wð1Þ ¼ 0, we can
summarize the KVSS-LMS algorithm as follows:

yðnÞ ¼WðnÞTuðXðnÞÞ ¼ m
Xn�1

j ¼ 1

eðjÞkðXðjÞ,XðnÞÞ,

eðnÞ ¼ dðnÞ�yðnÞ,

Wðnþ1Þ ¼WðnÞþmðnÞeðnÞuðXðnÞÞ,
pðnÞ ¼ bpðn�1Þþð1�bÞeðnÞeðn�1Þ,

mðnþ1Þ ¼ amðnÞþgp2ðnÞ: ð16Þ

Compared with the KLMS algorithm, the KVSS-LMS
algorithm has an adaptive step-size parameter and we do
not need to adjust it by hand.

At iteration i, given a test input point Xn, the output of
the system is

yn ¼ f ðXnÞ ¼
Xi

j ¼ 1

mðjÞeðjÞkðXðjÞ,XnÞ: ð17Þ

Since the update of the step-size parameter in the
KVSS-LMS algorithm is in the original space other than in
RKHS, the convergence analysis of the algorithm is quite
similar to that in [14]. Limited to the length of this paper,
we omit it here.

3. Kernel Incremental MEtaLearning Algorithm (KIMEL)

3.1. Algorithm formulation

Inspired by the derivation of the IDBD algorithm [2],
we propose an incremental metalearning algorithm in
RKHS, named KIMEL. Many well-known learning algo-
rithms were derived by using gradient decent, including
the LMS algorithm and the Back-Propagation (BP) learn-
ing algorithm. Here we derive the KIMEL algorithm also
by using gradient descent. The newly proposed algorithm
is not directly the IDBD algorithm [2] in RKHS. The
original IDBD algorithm has an individual step-size para-
meter for each weight component of a weight vector,
while the KIMEL algorithm has a common step-size
parameter for all weight components of a weight vector.
Because in RKHS, the weight dimension can be very
high, for example, it is infinite for the Gaussian kernel,
adjusting individual step-size parameter on each weight
dimension is unrealistic. Thus, we adopt the common
step-size parameter adjusting strategy on all weight
components of a weight vector here. This is also the main
reason that we do not call the new algorithm KIDBD. We
admit that an algorithm with a common step-size para-
meter is not as good as the counterpart with different
step-size parameters. This is a compromise strategy.
Fortunately, from the simulations shown in the next
sections, we see that the KIMEL algorithm with a common
step-size parameter still has excellent performance.

We are trying to minimize the expected value of the
square error e2ðnÞ, where eðnÞ ¼ dðnÞ�yðnÞ. Because the
expected error is unknown, we use instead the gradient of
the sample error e(n). The update of the weight vector is

Wðnþ1Þ ¼WðnÞ�
1

2
mðnþ1Þ

@e2ðnÞ

@WðnÞ

¼WðnÞ�mðnþ1ÞeðnÞ
@eðnÞ

@WðnÞ

¼WðnÞ�mðnþ1ÞeðnÞ
@½dðnÞ�yðnÞ�

@WðnÞ

¼WðnÞþmðnþ1ÞeðnÞ
@yðnÞ

@WðnÞ

¼WðnÞþmðnþ1ÞeðnÞ
@

@WðnÞ
½WðnÞTuðnÞ�

¼WðnÞþmðnþ1ÞeðnÞuðnÞ, ð18Þ

where uðnÞ is the projection of the input XðnÞ in RKHS.
We use an alternative function of the step-size para-

meter as follows, other than the exponential function
shown in (1):

mðnÞ ¼ 1

1þe�bðnÞ
: ð19Þ

By using this function, the step-size parameter m is guaran-
teed positive, and the range is (0,1), which is the range of the
step-size parameter usually in. Thus, we do not need to set
the upper and the lower bound additionally.

The sample error is also a function of b. Using gradient
descent to minimize the sample error e(n) with respect to
b, we have:

bðnþ1Þ ¼ bðnÞ�
1

2
y
@e2ðnÞ

@b

¼ bðnÞ�
1

2
y
@e2ðnÞ

@WðnÞ

@WðnÞ

@b

¼ bðnÞþyeðnÞuðnÞT
@WðnÞ

@b
¼ bðnÞþyeðnÞuðnÞT hðnÞ, ð20Þ

where the positive constant y is the so-called metalearn-
ing rate [2]. In this equation, the partial derivative with
respect to b without a time index should be explained as
the derivative with respect to an infinitesimal change in b
at all time steps. The vector hðnÞ is defined as @WðnÞ=@b,
which is a memory parameter. The update rule for hðnÞ is
in turn derived as follows:

hðnþ1Þ ¼
@Wðnþ1Þ

@b
¼

@

@b
WðnÞþ

1

1þe�bðnþ1Þ
eðnÞuðnÞ

� �
¼ ½I�mðnþ1ÞuðnÞuðnÞT �hðnÞþmðnþ1Þ½1�mðnþ1Þ�eðnÞuðnÞ,

ð21Þ
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where ½I�mðnþ1ÞuðnÞuðnÞT �hðnÞ should be interpreted as
a forgetting term, which causes a decay of hðnÞ. To make
the algorithm computationally tractable in RKHS, we use
a constant forgetting factor lð0olo1Þ. Thus the first
term becomes lhðnÞ. Getting rid of the half-rectified
operator (see (1)) also brings convenience for theoretical
analysis. Since mðnþ1Þ½1�mðnþ1Þ� is always positive, the
second term increments hðnÞ by the last weight change.
The repeated application of (21) through iterations yields

hðnÞ ¼
Xn�1

j ¼ 1

ln�1�jmðjþ1Þ½1�mðjþ1Þ�eðjÞuðjÞ: ð22Þ

Thus, the memory vector hðnÞ is a decaying trace of the
cumulative sum of recent changes to Wðnþ1Þ.

Similar to the analysis in the previous algorithm, u is
only implicitly known. So, we need an alternative way to
carry out the computation. To make the KIMEL algorithm
computable, the step-size parameter should be computa-
ble in RKHS. By substituting (22) into (20), the update
of b is:

bðnþ1Þ ¼ bðnÞþyeðnÞuðnÞT
Xn�1

j ¼ 1

ln�1�jmðjþ1Þ½1�mðjþ1Þ�eðjÞuðjÞ

¼ bðnÞþyeðnÞ
Xn�1

j ¼ 1

ln�1�jmðjþ1Þ½1�mðjþ1Þ�eðjÞuðnÞTuðjÞ

¼ bðnÞþyeðnÞ
Xn�1

j ¼ 1

ln�1�jmðjþ1Þ½1�mðjþ1Þ�eðjÞkðn,jÞ: ð23Þ

From (23), we see that the memory parameter b is
computable, then the step-size parameter m is also com-
putable in RKHS. Unlike in the IDBD algorithm, b in (23)
does not depend on hðnÞ explicitly any more. Let Wð1Þ ¼ 0,
the KIMEL algorithm is summarized below.

Algorithm. The kernel incremental metalearning algo-
rithm (KIMEL)

Input: training data ðXð1Þ,dð1ÞÞ,ðXð2Þ,dð2ÞÞ, . . . ,ðXðNÞ,dðNÞÞ

Initialization: choose the metalearning rate y, the forgetting factor

l, the initial step-size fmð1Þ,mð2Þg, the kernel kð�,�Þ, the initial center

Cð1Þ ¼ fXð1Þg, and the initial output yð1Þ ¼ 0.

Iteration:

for n¼ 2 : N

(1) compute the filter output

yðnÞ ¼WðnÞTuðnÞ ¼
Pn�1

j ¼ 1 mðjþ1ÞeðjÞkðj,nÞ
(2) compute the error

eðnÞ ¼ dðnÞ�yðnÞ

(3) compute the new step-size

bðnþ1Þ ¼ bðnÞþyeðnÞ

�
Pn�1

j ¼ 1 l
n�1�jmðjþ1Þð1�mðjþ1ÞÞeðjÞkðn,jÞ

mðnþ1Þ ¼ 1
1þ e�bðnþ 1Þ

(4) store the new center

CðnÞ ¼ fCðn�1Þ,XðnÞg
end

Finally, we note that the increment to b is proportional
to the product of the current weight change eðnÞuðnÞ and a
trace of recent weight changes. If the current step is
positively correlated with past steps, it indicates that
the past steps should have been larger (and equation
(20) accordingly increases b, then the step-size parameter
m increases); if the current step is negatively correlated
with past steps, it indicates that the past steps were too
large (and equation (20) accordingly decreases b, then the
step-size parameter m decreases). As we know from
Section 2.1, such are the basic features of the IDBD
algorithm, which are inherited in the KIMEL algorithm.
Note that this algorithm, as well as the former two kernel
algorithms, are computed without using the weights. We
write explicitly the expressions of the weight iterations
simply for clarity and for keeping consistent with the
usual (non-kernel) adaptive algorithms.

3.2. Convergence analysis of the mean weight vector

The KIMEL algorithm given in Algorithm is difficult to
analyze exactly. To simplify the analysis, we introduce the
following assumption [13]:

E½mðnþ1Þeðnþ1ÞuðnÞ� ¼ E½mðnþ1Þ�E½eðnÞuðnÞ�: ð24Þ

The condition for this assumption to be true is that mðnþ1Þ is
a constant. It cannot really hold for the KIMEL algorithm.
However, normally, the metalearning rate y is chosen as a
small value, thus the step-size parameter varies slowly
around its mean value and we can say that this assumption
is approximately true. This assumption was widely adopted
in analyzing variable step-size adaptive algorithms.

Now we provide the convergence analysis of the
proposed algorithm when operating in stationary envir-
onment. The analysis method is a standard method in
the field.

The desired output signal d(n) is given by

dðnÞ ¼WT
n
uðnÞþxðnÞ, ð25Þ

where xðnÞ is a zero-mean independent disturbance.
From the above assumption, we have the mean weight

vector in RKHS:

E½Wðnþ1Þ� ¼ E½WðnÞ�þE½mðnþ1Þ�E½eðnÞuðnÞ�

¼ E½WðnÞ�þE½mðnþ1Þ�E½ðdðnÞ�yðnÞÞuðnÞ�

¼ E½WðnÞ�þE½mðnþ1Þ�E½ðuðnÞT Wn

þxðnÞ�uðnÞT WðnÞÞuðnÞ�

¼ E½WðnÞ�þE½mðnþ1Þ�RE½Wn�WðnÞ�, ð26Þ

where R¼ E½uðnÞuðnÞT � is the autocorrelation matrix of
the transformed input data. Let ~W ðnÞ ¼WðnÞ�Wn repre-
sent the weight-error vector, then by subtracting E½Wn�

from both sides of (26), we have

E½ ~W ðnþ1Þ� ¼ ½I�E½mðnþ1Þ�R�E½ ~W ðnÞ�: ð27Þ

The mean weight vector is converged if and only if

YN
n ¼ 0

½I�E½mðnþ1Þ�R�-0, as N-1: ð28Þ

From (28), we obtain a sufficient condition to ensure the
convergence of the mean weight vector:

0oE½mðnþ1Þ�o
2

lmaxðRÞ
, ð29Þ

where lmaxðRÞ is the maximum eigenvalue of the matrix
R. However, the upper bound in (29) is incomputable
as a result of R¼ E½uðnÞuðnÞT �. In order to compute it
conveniently, we use the estimation version of the auto-
correlation matrix. Denoting the transformed data matrix
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U¼ ½u1,u2, . . . ,uM �, where M is the size of the training
data, Rj ¼ ð1=MÞUUT its autocorrelation matrix, and
Gj ¼UTU its Gram matrix which is an M�M matrix
with kðXðiÞ,XðjÞÞ as its (i,j)th component. We use the
following facts: Rj and Gj are both positive semidefinite;
if Rj has m nonzero eigenvalues fljg

m
j ¼ 1, Gj has m

nonzero eigenvalues, which are fMljg
m
j ¼ 1. Therefore, the

estimation version of the convergence range for E½mðnþ1Þ�
is

0oE½mðnþ1Þ�o
2M

lmaxðGjÞ
: ð30Þ

3.3. Mean-square-error behavior and steady-state analysis

In the following, we conduct the MSE behavior and
steady-state analysis. To assess the performance of the
system, we need to derive the expression of the
misadjustment.

Since R, the autocorrelation matrix of the transformed
data u, is symmetric, there exist matrices Q and K, where
K is the diagonal matrix of eigenvalues of R and
QQ T

¼Q T Q ¼ I, such that R¼QKQ T . Let VðnÞ ¼Q T ~W ðnÞ
and u0ðnÞ ¼Q TuðnÞ, this algorithm in terms of VðnÞ is as
follows:

Vðnþ1Þ ¼ ½I�mðnþ1Þu0ðnÞu0ðnÞT �VðnÞþmðnþ1ÞxðnÞu0ðnÞ:
ð31Þ

As in [12], the MSE is defined as

E½e2ðnÞ� ¼ E½x2
ðnÞ�2xðnÞu0ðnÞT VðnÞþVðnÞTj0ðnÞj0ðnÞT VðnÞ�

¼ E½x2
ðnÞ�þ trðKE½VðnÞVðnÞT �Þ

¼ EminþEexðnÞ, ð32Þ

where Emin ¼ E½x2
ðnÞ� is the minimum value of the MSE,

and EexðnÞ ¼ trðKE½VðnÞVðnÞT �Þ is the excess MSE. From
equation (32), we know that the MSE is related to the
diagonal elements of E½VðnÞVðnÞT �. To calculate the
expression of E½VðnÞVðnÞT �, as widely accepted and used
in this field (see, e.g. [7,8]), we assume that the weight-
error vector VðnÞ and the input vector uðnÞ are statistically
independent. Then by postmultiplying both sides of (31)
by Vðnþ1ÞT and taking expectations, we have

E½Vðnþ1ÞVðnþ1ÞT � � E½VðnÞVðnÞT ��KE½mðnþ1Þ�E½VðnÞVðnÞT �

�E½mðnþ1Þ�E½VðnÞVðnÞT �KþE½m2ðnþ1Þ�KE½VðnÞVðnÞT �K

þE½m2ðnþ1Þ�KEmin: ð33Þ

Note that the relationship between mðnÞ and bðnÞ is
nonlinear, referring to Algorithm. In order to compute
E½mðnÞ� given the expectation of bðnÞ, we firstly introduce
a conclusion: For a continuous random variable X with
expectation w and variation s2, and Y is some function of X,
denoted as Y ¼HðXÞ, then the expectation of Y can be
computed approximately by

E½Y� �HðwÞþ H00ðwÞ
2

s2: ð34Þ

This approximation can be obtained easily by Taylor series
expansion around E(X). Apply this conclusion to the analysis
of E½mðnÞ� and E½m2ðnÞ�, and meanwhile we notice that, as
mentioned above, bðnÞ can be regarded approximately as a
constant in the small y case, thus the variation of bðnÞ is
very small. Using (34), we have

E½mðnÞ� � 1

1þe�E½bðnÞ� , ð35Þ

and

E½m2ðnÞ� �
1

1þe�E½bðnÞ�

� �2

: ð36Þ

From Algorithm, the mean of bðnÞ is

E½bðnþ1Þ� ¼ E½bðnÞ�

þE yeðnÞ
Xn�1

j ¼ 1

ln�1�jmðjþ1Þ½1�mðjþ1Þ�eðjÞkðn,jÞ

2
4

3
5:
ð37Þ

To study the steady-state performance of the proposed
algorithm, in the following analysis we assume that the
proposed algorithm has converged. In this case, the
sample of the error e(n) can be assumed uncorrelated,
i.e., E½eðn�iÞeðn�jÞ� ¼ 0 for iaj and the step-size parameter
mðnÞ is approximately independent of e(n) and uðnÞ [2],
hence, the last term of (37) is zero. This means that the
value of E½bðnÞ� is a constant in the converged condition.
Denoting E½bð1Þ� ¼ B, from (35) and (36), we obtain the
mean and mean-square behaviors of mðnÞ and m2ðnÞ,

E½mð1Þ� � 1

1þe�B
, ð38Þ

and

E½m2ð1Þ� �
1

1þe�B

� �2

, ð39Þ

where E½m2ð1Þ� and E½mð1Þ� are the steady-state values of
E½m2ðnÞ� and E½mðnÞ�, respectively. Following the same
argument as in [13], a sufficient condition that guarantees
the convergence of the MSE is

0o
E½m2ð1Þ�

E½mð1Þ� o
2

3 trðRÞ
: ð40Þ

From (38) and (39), we have

E½m2ð1Þ�

E½mð1Þ� �
1

1þe�B
� E½mð1Þ� ¼ C, ð41Þ

hence, the condition to ensure the convergence of the
MSE in the KIMEL algorithm is

0oE½mð1Þ�o 2

3 trðRÞ
, ð42Þ

i.e.,

E½bð1Þ�4 ln
2

3 trðRÞ�2
: ð43Þ

The misadjustment is defined as [11]

M¼
Eexð1Þ

Emin
: ð44Þ

If the algorithm satisfies the condition (42) or (43),
substituting (32) and (33) into (44), we have

M¼
XN

i ¼ 1

E½m2ð1Þ�li

2E½mð1Þ��E½m2ð1Þ�li
: ð45Þ
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Rearranging (45) and substituting (41) into (45) yield

M¼
XN

i ¼ 1

Cli

2�Cli
: ð46Þ

In the event of small value of misadjustment so thatPN
i ¼ 1 Cli51, we have the following expression of mis-

adjustment:

M�
C

2
trðRÞ: ð47Þ

Similarly, the misadjustment expressed in (47) is incom-
putable as a result of R¼ E½uðnÞuðnÞT �, but we can
obtain the estimation version of the misadjustment of
the KIMEL as

M�
C

2
trðRjÞ ¼

C

2M
trðGjÞ: ð48Þ

4. A simple application in nonlinear channel
equalization

The KLMS algorithm has been shown to have good
performance in nonlinear channel equalization [4]. Now
we also test the KIMEL algorithm in this problem and
compare it with the KLMS and KVSS-LMS algorithms.

We first describe the example used in [5] briefly. The
nonlinear channel model is shown in Fig. 1, which consists
of a serial connection of a linear filter and a memoryless
nonlinearity unit. A binary signal fsð1Þ,sð2Þ, . . . ,sðNÞg is fed
into the channel. At the receiver of the channel, the signal
is corrupted by additive white Gaussian noise and the
output is frð1Þ,rð2Þ, . . . ,rðNÞg. The aim of channel equaliza-
tion is to construct an ‘‘inverse’’ filter that reproduces the
original signal with as low error as possible. It can be
Fig. 1. Basic structure of a nonlinear channel.

0 0.5 1 1.5 2 2.5 3

0 0.2 0.4 0.6 0.8 1

0

0.4

0.2

0.6

0.8

te
s
ti
n

g
 M

S
E

te
s
ti
n

g
 M

S
E

KLMS

KVSS−LMS

μ

γ

Fig. 2. (a) The influence of different g on the testing MSE of the KVSS-LMS and

KIMEL and the KLMS.
formulated as a regression problem with examples
f½rðiÞ,rðiþ1Þ, . . . ,rðiþ lÞ�,sði�DÞg, where l is a time-embed-
ding length and D is a time lag. As in [5], we set l¼5 and
D¼2. The nonlinear channel model is defined by xðiÞ ¼

sðiÞþ0:5sði�1Þ and rðiÞ ¼ xðiÞ�0:9xðiÞ2þnðiÞ, where n(i) is
the white Gaussian noise with a variance of s2.

We first compare the performance among the KLMS,
KVSS-KLMS, and KIMEL algorithms with the varying of the
(meta-)learning rates m, g and y, respectively. In this
simulation, for the KVSS-LMS algorithm, we set a¼ 0:99
(which is found to work well in this application), b¼ 0:99
(for stationary environment it should be close to 1 as
mentioned above), mmax ¼ 0:5, mmin ¼ 0:001. For the KIMEL
algorithm, l¼ 0:8 is used. We found that the choice of l
has little effect on the performance as long as it is close to
and less than 1. Since the step-size parameters in the
KVSS-LMS and KIMEL are both adaptive, the initial step-
size parameters can be set as arbitrary small values. In our
simulation, they are both set as 0.5. In all the three
algorithms, the Gaussian kernel with a0 ¼ 0:1 is chosen.

The filters are trained with 1000 data and fixed after-
ward, then 200 sample random test data are used to test
the performance of the three algorithms. Since the three
MSE curves corresponding to the three algorithms have
three different (meta-)learning parameters (horizontal
axes), plotting them altogether in a panel is impossible.
We plot them in two panels, as shown in Fig. 2. Each point
in the figure is obtained by averaging over 50 Monte Carlo
independent tests. The result in Fig. 2(a) shows that the
KVSS-LMS outperforms the KLMS in terms of the MSE in a
certain range of g. However, if the value of g approaches
zero, the performance of the KVSS-LMS is worse than that
of the KLMS, which is of no surprise because the step-size
parameter mðnÞ decreases exponentially when g is small,
and after some iterations, it become so small that the
forthcoming training data has little contribution to the
MSE reduction. In Fig. 2(b), it can be seen that the KIMEL
outperforms the KLMS in a wide range of y, and the choice
of y has little influence on the performance of the
algorithm. The performance of the KIMEL for a wide range
0
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of y is as good as that of the KVSS-LMS with the optimal
g value.

Next, we compare the convergence behaviors of these
algorithms. The filters are also trained with 1000 data and
tested with another 200 sample random test set. At each
iteration, the testing MSE is computed on the test set
using the filters resulting from the training, which is the
same as the computing method in [5]. The step-size
parameter of the KLMS is set as 0.1 which is almost the
optimal value for the KLMS algorithm refereing to Fig. 2.
To guarantee that the final MSE of the KVSS-LMS is
approximately the same as that of the KLMS, g¼ 0:5 is
used in the KVSS-LMS. As for the KIMEL, due to the little
influence of y on the final MSE, we choose y¼ 0:5 to
ensure that the initial convergence rate is approximately
equal to that of the KVSS-LMS. The setting of the other
parameters is the same as above. Fig. 3 is a typical plot of
the learning curves, averaged over 10 Monte Carlo inde-
pendent tests. It shows that the KIMEL algorithm provides
a faster convergence rate than the KLMS algorithm, and
the lowest final MSE among the three algorithms.

5. Application in blind image quality assessment

We live in an increasingly visual digital world. How to
assess the quality of an image becomes more and more
important. An intuitive method is subjective testing,
which measures perceived quality by asking many human
assessors to score the quality of a set of test images.
Although this method can achieve ‘‘accurate’’ results, it is
time-consuming and very difficult to model in a determi-
nistic way. Therefore, there is an increasing demand to
develop objective measurement techniques that can
assess image quality automatically.

Objective image quality assessment can be divided
into three categories depending on the amount of infor-
mation provided to the algorithm. Full-Reference (FR)
methods [19–21] need whole information of the original
undistorted image and the distorted image whose quality
is to be assessed. Reduced-Reference (RR) approaches
[22–25] are provided with the distorted image and some
additional information of the original undistorted image,
such as visual features. No-Reference (NR) /blind methods
[26–32] need no information of the original undistorted
image. In fact, we often meet the case that the original
images are not given in advance. So the development of
NR methods is highly desirable.

Recently, various NR IQA algorithms were presented.
In [26], it uses Nature Scene Statistic (NSS) to blindly
evaluate the quality of images compressed by JPEG2000
image coder. A similar method was proposed in [28],
which is based on NSS of the DCT coefficients. In [29], the
image quality assessment method based on the circular
back propagation neural model was presented to measure
the effects of image enhancement filters, using general
pixel-based image features. In the above mentioned NR
IQA algorithms, they are intended to assess a single
specific type of distortion, such as distortions in JPEG
compressed image. Naturally, more general NR IQA meth-
ods are required to deal with multiple types of distortions.
In [32], the Blind Image Quality Index (BIQI) was pro-
posed, which is a two-step framework for NR IQA based
on NSS. Recently, machine learning techniques have also
been applied to IQA, such as Nonnegative Matrix Factor-
ization (NMF), subspace learning and neural network
methods [33–37]. In [31], an image quality assessment
algorithm based on the General Regression Neural Net-
work (GRNN) was proposed, which uses the relevant
perceptual features. In this paper, the underlying IQA
problem belongs to the NR/blind category. In the follow-
ing, firstly we introduce several relevant perceptual fea-
tures and describe an image quality assessment scheme
used in this paper, then the experiments are given to
demonstrate the effectiveness of the proposed algorithm.

5.1. Relevant perceptual features

There are many methods about feature extraction,
such as Independent Component Analysis (ICA) [17] and
Direct Kernel Biased Discriminant Analysis (DKBDA) [18].
In this paper, we choose several image features from
[27,31] which possess relevant information-bearing.
These features are complementary aspects on the image
content: phase congruency, local information, gradient
and zero-crossing rate. The first feature measures the
degree of coherency of the local frequencies comprising
the image; the second feature reflects the available local
information contents of the image; the third feature
measures the relevant rate of change of image luminance;
and the last feature reflects the activity of the image. Any
one of these is less relevant without the other three. Phase
congruency loses relevance in the case that the image
information and activity is reduced. If the local phase is
random-like or the activity is low, the image information
will not reflect perceptual features. The gradient and zero-
crossing rate are less critical when the image has less local
information and structure (phase congruency).

5.1.1. Phase congruency

Phase congruency is a relatively new concept as an
image feature. The underlying principle of phase con-
gruency is that perceptually significant image features
occur at spatial locations where the important Fourier
components are maximally in-phase with one another.



Fig. 4. Schematic diagram for NR image quality assessment.
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Phase congruency has many applications in image
processing, including feature detection, segmentation,
face recognition, etc.

Phase congruency has two popular kinds of definitions.
The first definition was proposed by Morrone and Owens
[39], who defined its function in terms of the Fourier
series expansion of a signal I at a location x to be

PCIðxÞ ¼ max
jðxÞ2½0,2p�

P
nAn cos½jnðxÞ�jðxÞ�P

nAn
, ð49Þ

where An is the amplitude of the nth Fourier component
of the image signal I, jnðxÞ is the local phase of the Fourier
component at x, and jðxÞ is the average phase at x. The
value of jðxÞ that maximizes the equation (49) is the
amplitude weighted mean local phase angle of all the
Fourier terms at x.

The second measure of phase congruency was pro-
posed by Kovesi [40], which is easier to compute

PCIIðxÞ ¼

P
nWðxÞbAnðxÞDjnðxÞ�TcP

nAnðxÞþe
, ð50Þ

where bc denotes that the enclosed quantity is equal to
itself when its value is nonnegative, and zero otherwise;
the term W(x) is a factor that weights for frequency spread;

AnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enðxÞ

2
þonðxÞ

2
q

is the amplitude at a given wavelet

scale, ½enðxÞ,onðxÞ� ¼ ½IðxÞnMe
n,IðxÞnMo

n�, I is the image signal,

Mn
e

is even-symmetric wavelet at a scale n, while Mn
o

is odd-

symmetric; DjnðxÞ ¼ cos½jnðxÞ�jðxÞ��9sin½jnðxÞ�jðxÞ�9 is

a sensitive measure of phase deviation; T is an estimate of
the noise level which is determined from the statistics of
the filter responses to the image; and e is a small value
which prevents division from zero. The MATLAB code of
computing phase congruency can be found at http://www.
csse.uwa.edu.au/ pk/Research/MatlabFns/index.html.

5.1.2. Image entropy

The sample entropy of the image I is defined as

EI ¼�
X

n

pðnÞlog2 pðnÞ, ð51Þ

where p(n) is the empirical probability of luminance value n.
We can use the MATLAB function entropy() to calculate the
entropy of an image. It has been used in a variety of ways,
but only a few applications are relevant to IQA.

5.1.3. Image gradient

The image gradient is a directional change in the intensity
or color in an image. Image gradient is a normal way used to
extract information from an image. If luminance changes
significantly in the image I, the gradient rI¼ ½rIx,rIy� is
large. A simple and robust measurement of the horizontal
and vertical components of the gradient of I is attained by
convolving I with the 3�3 Sobel operator. We can use
MATLAB function gradient() to compute it. As usual, the
gradient amplitude is estimated as the square root of the sum
of the direction derivation estimates.

5.1.4. Zero-crossing rate

Although blurring is difficult to be evaluated without
the reference image, it causes the reduction of signal
activity. We can use the activity measures to get more
insight for the relative blur in the image, in addition to
that reflected in the phase congruency. One of the activity
measures is the Zero-Crossing (ZC) rate. Denote the test
image signal as Iðm,nÞ where m 2 ½1,M� and n 2 ½1,N�. For
n 2 ½1,N�2�, we define

zhðm,nÞ ¼
0 horizontal ZC at dhðm,nÞ,

1 otherwise,

(
ð52Þ

where dhðm,nÞ ¼ Iðm,nþ1Þ�Iðm,nÞ reflects a difference
signal along each horizontal line. The horizontal ZC rate
then can be estimated as

Zh ¼
1

MðN�2Þ

XM
i ¼ 1

XN�2

j ¼ 1

zhðm,nÞ: ð53Þ

We can calculate the vertical feature of ZC rate Zv by using
the similar method. Finally the feature is given by

Z ¼
ZhþZv

2
ð54Þ

5.2. NR/blind image quality assessment scheme

In Fig. 4, we show a schematic diagram for NR/blind
image quality assessment which is used in our experi-
ment. It consists of four parts: the first part is a number of
images from an image database; the second part is feature
extraction and the extracting results contains image
information; the third part is regarded as a processor
which can assess the quality of images by using these
features as inputs; and the last one is the output of the
processor which is image quality score.

5.3. Experiments

We use five perceptually motivated features as the
input according to the above illustration: (1) the mean
value of the phase congruency of the distorted image; (2)
the entropy of the phase congruency of the distorted
image; (3) the entropy of the gray value of the distorted
image; (4) the mean value of the gradient amplitude of
the distorted image; and (5) the average of the ZC rate.

In our experiment, we use the popular LIVE IQA
Database [41]. There are five types of distorted images
in the database: JPEG, JPEG2000 (JP2K), White Noise
(WN), Blur, and Fast-Fading (FF). The database contains
a total of 982 images. Besides, this database includes
Differential Mean Opinion Scores (DMOS), which are
given by subjective methods for each distorted image.
In the following experiments, we remove all reference
images (totally 203) from the database, leaving 779
distorted images for training and testing. The LIVE IQA
Database (totally 779 images) consists of 29 groups of

http://www.csse.uwa.edu.au/ pk/Research/MatlabFns/index.html
http://www.csse.uwa.edu.au/ pk/Research/MatlabFns/index.html
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images having identical content but different levels of
distortion. In each experiment, we randomly select 5
groups as the testing dataset, and the other groups as
the training dataset. Thus, no content is shared between
these two datasets. To illustrate the training and testing
method, we show one division of the datasets in Table 1.
In the following simulations, the results are all obtained
by averaging over 30 independent experiments.

In the experiments, we extract the features of the
images as the inputs, and we use the DMOS as the desired
outputs. After training, we use the algorithms to attain the
scores of the test images, and we calculate the values of the
following measures. To show the efficiency of the KIMEL
algorithm, we compare it with the KLMS, KVSS-LMS, and
three NR IQA algorithms proposed recently (GRNN-based
IQA algorithm [31], BIQI [32] and BLIINDS [38]).

In order to compare the performance of these algo-
rithms, we introduce three measures according to VQEG
[42]. The first one is the Spearman Rank Order Correlation
Coefficient (SROCC), which measures the monotonicity of
the quality index. The larger the SROCC value is, the
better. The second one is the (Pearson’s) Linear Correla-
tion Coefficient (LCC) (the larger, the better). The third
one is the Root MSE (RMSE) (the smaller, the better).

In the first simulation, we test the RMSE performance
of the KLMS, KVSS-LMS and KIMEL with the varying of
their (meta-)learning rates, respectively. In this simula-
tion, for the KVSS-LMS algorithm, we set a¼ 0:997,
b¼ 0:9, mmax ¼ 0:5, mmin ¼ 0:05. The KVSS-LMS with these
Table 1
Image categories for different datasets.

Data Image categories

Training

Dataset

bikes, house, paintedhouse, sailing1, statue, dancers

caps, cemetery, manfishing, lighthouse, sailing4,

coinsinfountian carnivaldolls, monarch,

studentsculpture, ocean, parrots, sailing2 womanhat,

flowersonih35, lighthouse2, rapids, building2, plane

Testing

Dataset

churchandcapitol, buildings, stream, woman, sailing3
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Fig. 5. (a) The influence of different g on the RMSE performance of the KVS

performance of the KIMEL and the KLMS.
parametric values is found to work well in this applica-
tion. For the KIMEL algorithm, l¼ 0:8 is used. The initial
step-size parameters for the KVSS-LMS and the KIMEL are
both set as 0.5. In all the three algorithms, the Gaussian
kernel with a0 ¼ 10 is chosen.

The results are presented in Fig. 5. From Fig. 5, we see
that the choices of the g and y values in broad ranges have
little influence on the performance of the KVSS-LMS and
the KIMEL algorithms. The KIMEL outperforms the KLMS
and the KVSS-LMS algorithms in terms of RMSE.

In the second simulation, the parameters of the KVSS-LMS
are set as a¼ 0:997, b¼ 0:9, g¼ 1, mmax ¼ 0:5, mmin ¼ 0:05
and the parameters of the KIMEL are set as y¼ 0:1, l¼ 0:8.
The step-size parameter of the KLMS is set as 0.2 and the
spread parameter of the GRNN for fitting is set as 0.04. The
purpose of these parameter setting is to make the algorithms
have respectively excellent performance in NR IQA. Using
the trained models, image quality is assessed, yielding the
averaged results shown in Table 2.

From Table 2, we see that the KIMEL outperforms the
KLMS and the KVSS-LMS algorithms in terms of both the
SROCC, LCC and RMSE measures. Among the kernel
algorithms and other NR IQA algorithms (GRNN-based
IQA algorithm, BIQI and BLIIND indices), the KIMEL algo-
rithm has the best overall performance.

6. Conclusion

In this paper, we proposed a kernel incremental meta-
learning algorithm named KIMEL, which was derived by
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Table 2
NR IQA Results on LIVE IQA Database.

Method SROCC LCC RMSE

KIMEL 0.8407 0.8439 8.7457

KVSS-LMS 0.8294 0.8281 9.5088

KLMS 0.8184 0.8197 9.7040

GRNN 0.8297 0.8301 8.8900

BIQI [32] 0.8195 0.8205 15.6223

BLIINDS [38] 0.7996 N/A N/A
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utilizing the gradient descent method. Detailed conver-
gence analyses were presented. One of the advantages of
the KIMEL algorithm is that it has only two parameters, the
metalearning rate y and the forgetting factor l, which have
quite wide ranges for choice to produce excellent perfor-
mance. Thus in using the KIMEL algorithm, we do not need
to choose the parameters scrupulously, which is a quite
tedious task in using some other algorithms. The proposed
algorithm was applied successfully to the nonlinear chan-
nel equalization and the NR IQA problem. Experimental
results showed that the performance of the KIMEL algo-
rithm is superior to that of the competing methods.
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