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BVMatch: Lidar-Based Place Recognition Using
Bird’s-Eye View Images

Lun Luo , Si-Yuan Cao, Bin Han, Hui-Liang Shen , and Junwei Li

Abstract—Recognizing places using Lidar in large-scale environ-
ments is challenging due to the sparse nature of point cloud data.
In this letter we present BVMatch, a Lidar-based frame-to-frame
place recognition framework, that is capable of estimating 2D
relative poses. Based on the assumption that the ground area can
be approximated as a plane, we uniformly discretize the ground
area into grids and project 3D Lidar scans to bird’s-eye view (BV)
images. We further use a bank of Log-Gabor filters to build a maxi-
mum index map (MIM) that encodes the orientation information of
the structures in the images. We analyze the orientation character-
istics of MIM theoretically and introduce a novel descriptor called
bird’s-eye view feature transform (BVFT). The proposed BVFT
is insensitive to rotation and intensity variations of BV images.
Leveraging the BVFT descriptors, we unify the Lidar place recog-
nition and pose estimation tasks into the BVMatch framework.
The experiments conducted on three large-scale datasets show that
BVMatch outperforms the state-of-the-art methods in terms of
both recall rate of place recognition and pose estimation accuracy.

Index Terms—Localization, range sensing, SLAM.

I. INTRODUCTION

P LACE recognition is a crucial ability for the auto-
navigating robots to perform long-term simultaneous local-

ization and mapping (SLAM) tasks [1]. Benefiting from the local
image features [2], [3] and the bag-of-features techniques [4],
[5], a number of image-based place recognition methods [6],
[7] have been introduced and perform satisfactorily in some
environments. However, their performance may degrade in case
of illumination change and viewpoint variation, due to the nature
of imaging mechanism. Compared with images, Lidar scans
have larger perception fields and are insensitive to illumination
changes. In road scenes where the ground area can be approx-
imately regarded as a plane, Lidar scans are also insensitive
to orientations. These advantages mean that the Lidar-based
place recognition methods may have better performance than the
image-based ones. Actually, current Lidar-based methods [8]–
[11] have shown the superiority of Lidar scans in terms of place
retrieval ability in large-scale environments.
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In this letter we present BVMatch, a novel Lidar-based place
recognition method that is capable of estimating 2D relative
poses. Based on the assumption that the ground area can be
regarded as a plane in road scenes, BVMatch divides the ground
plane into uniform grids and accumulates the scanned points
in each grid to form the BV image. This orthogonal projection
procedure makes the transform of the BV image pair a rigid
transform, which is similar to the 2D transform of the Lidar
scan pair. However, we note that BV image inherits the sparsity
of Lidar scans and suffers severe intensity distortion that cannot
be handled by classic image features such as SIFT [2]. To tackle
this problem, we introduce the bird’s-eye view feature transform
(BVFT) that is invariant to intensity and rotation changes of
BV images. We build BVFT based upon the maximum index
map (MIM) of Log-Gabor filter responses [12], and theoretically
analyze its characteristics on orientation shift. Based on BVFT,
BVMatch uses the bag-of-words (BoW) approach for place
recognition and uses RANSAC [13] for relative pose estimation.
In summary, the main contributions of this work are:
� We propose a novel local descriptor called BVFT that is

insensitive to intensity and rotation variation of BV images,
with which the BVMatch framework can unify the Lidar
place recognition and pose estimation tasks.

� We theoretically prove that BVFT can achieve rotation
invariance by shifting the orientations in the local MIM.

� We experimentally validate on three large-scale datasets
that BVMatch outperforms the state-of-the-arts on both
place recognition and pose estimation.

II. RELATED WORK

The Lidar-based place recognition methods can be approx-
imately classified into two categories, i.e. the methods that
directly utilize raw point clouds and the methods that use images
as intermediate representations.

The first category focuses on extracting local features or
global descriptors from raw point clouds. Rusu et al. [14] present
fast point feature histograms (FPFH) to align point cloud pairs.
Tombari et al. [15] introduce signatures of histograms for local
surface description (SHOT) for surface matching. Bosse and
Zlot [16] extract Gestalt keypoints and descriptors from point
clouds and use keypoints voting to recognize places. These local
features exploit local characteristics of point cloud using geo-
metric measures such as normals and curvatures, while BVFT
encodes the structure information in BV images. Instead of using
local descriptors, SegMatch [17] extracts higher-level segments
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belonging to partial or full objects, and then matches these
segments for place recognition using the learned descriptors.
OneShot [18] follows SegMatch but extracts efficient segments
from a single Lidar frame. These two segment-based methods
adopt the frame-to-map matching framework while our BV-
Match is a frame-to-frame method. M2DP [19] projects a point
cloud to multiple 2D planes and generates a density signature for
points in each of the planes. The singular value decomposition
(SVD) components of the signature are then used to compute
a global descriptor. PointNetVLAD [8] leverages PointNet [20]
to extract features of point clouds and uses NetVLAD [5] to
generate global descriptors. Zhang and Xiao [10] introduce the
point contextual attention network (PCAN) that enables the
network to pay more attention to the task-relevent features when
generating global descriptors. LPD-Net [9] adopts an adaptive
local feature extraction module to extract the local structures
and uses a graph-based neighborhood aggregation module to
discover the spatial distribution of local features. These learning
based methods do not use local keypoints and thus they cannot
estimate relative poses. DH3D [11] uses the 3D local feature
encoder and detector to extract local descriptors. It embeds the
descriptors to a global feature for place recognition and align the
matched Lidar pairs using RANSAC. In comparison, our BVFT
is handcrafted and does not need training.

The second category projects Lidar scans to images for place
recognition. Steder et al. [21] extract local features from range
images of Lidar scans. Unlike BV image, the range image is
not Euclidean in nature since it is generated with the polar
projection. Kim et al. [22] partition the ground space into bins
according to both azimuthal and radial directions. Then they
propose the scan context descriptor in a 2D matrix form. They
further extend scan context to three channels, and introduce the
concept of scan context image (SCI) [23]. Place recognition is
achieved by classifying the SCIs using a convolutional network.
However, the pose estimation problem remains unsolved. Cao et
al. [24] project point clouds to cylindrical images and leverage
Gabor filters to describe the contours of scenes. A histogram
based descriptor is generated for every Lidar scan. Similar
to the image formations used in the aforementioned methods,
the content of cylindrical image is complex due to the special
projection procedure. Thus it cannot estimate relative poses as
well. To solve the problem, OverlapNet [25] adopts a siamese
network to estimate an overlap of range images and provides
a relative yaw angle estimate of Lidar pair. However, it is
incapable of estimating translation. On the contrary, BVMatch
uses a simple orthogonal projection procedure that makes the
transforms of BV image pair and Lidar scan pair similar, with
which BVMatch can localize query Lidar scans and produce
2D poses.

We note that BV image is similar to the occupancy grid
map [26] since they both partition space into grids. There are
several methods [27], [28] designed for the occupancy grid map
matching in the literature. Our BVMatch differs from these
methods in two aspects. First, they target on two different types
of representation. More specifically, the BV image is built with
point cloud density while the occupancy grid map is formed by
occupancy probabilities. Second, BVMatch is a frame-to-frame

method leveraging single 3D Lidar scans while [27], [28] are
map-to-map based methods.

III. BV IMAGE BASED PLACE RECOGNITION

The BVMatch method consists of the place recognition step
and the pose estimation step as illustrated in Fig. 1. In the
place recognition step, BVMatch generates the BV image and
performs frame retrieval with the BoW approach. In the pose
estimation step, BVMatch matches the BV image pair using
RANSAC and reconstructs the coarse 2D pose of the Lidar pair
with a similar transform. At last, BVMatch uses iterative closest
point (ICP) refinement with the 2D pose as an initial guess to
accurately align the Lidar pair.

In the following, we first introduce the BV image generation
mechanism and then present the coarse 2D pose reconstruction
of Lidar scan pairs. Finally, we demonstrate the offline dictionary
and the keyframe database creation.

A. BV Image Generation

There are several types of BV images, such as the maximum
height map used in place recognition [22] and the density map
used in object detection [29]. Both maps summarize the vertical
shape of surrounding structures. The maximum height map uses
the coordinate values of points with the maximal height, while
the density map leverages the point cloud density. The maximum
height map is sensitive to poses because the coordinate values
of points can vary severely when robot moves. In contrast, the
density map is more robust because the density of point cloud
does not depend on specific points. For this reason, we use the
latter as our BV image representation in this work.

Let P = {Pi|i = 1, . . ., Np} be a point cloud formed by
pointsPi = (xi, yi, zi) andNp the number of points in the cloud.
Suppose that the point cloud is collected in road scenes. The
x-axis is pointing to the right, the y-axis is pointing forward,
and the z-axis is pointing upward. In this coordinate system, the
x-y plane is the ground plane. Given a point cloud P , we first
use a voxel grid filter with the leaf size of g meters to evenly
distribute the points. Then we discretize the ground space into
grids with resolution of g meters. The point cloud density is the
number of points located in each grid. We consider a [−C m
, C m] cubic window centered at the coordinate origin. Then
BV image B(u, v) is a matrix of size � 2C

g � × � 2C
g �. The BV

intensity B(u, v) is defined as

B(u, v) =
min(Ng, Nm)

Nm
, (1)

where Ng denotes the number of points in the grid at position
(u, v) and Nm the normalization factor. Nm is set to be the 99th
percentile of the point cloud density.

BV image is a compressed representation of point cloud
and describes the 2.5D structural information of an egocentric
environment. It ignores the point distribution along the z-axis
while keeping the rigid structures on the x-y plane. We find that
the poles, facades, and guideposts in road scenes usually form
edges in the BV image. These features have good repeatability
and remain stable when the robot moves. We adopt FAST [30]
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Fig. 1. BVMatch framework. In the place recognition step, the dictionary and keyframe database are built offline. Given a query frame, BVMatch generate the
corresponding BV image and then extract keypoints and BVFT descriptors. Place recognition is achieved by the bag-of-words approach. In the pose estimation
step, BVMatch uses RANSAC to match the BV image pair and reconstructs the 2D relative pose of the Lidar pair. Finally, BVMatch uses the 2D pose as initial
guess of iterative closest point (ICP) to align the Lidar pair accurately.

for feature detection and use the keypoints for registration in the
BVMatch pipeline.

B. Pose Reconstruction

As BV image discretizes the ground space uniformly, the
transform of the Lidar scan pair (Pi,Pj) is similar to that of the
BV image pair (Bi(u, v), Bj(u, v)). After obtaining the trans-
form of (Bi(u, v), Bj(u, v)) we have Bi(u, v) = Bj(u,

′ v′),
with the coordinate

u′ = cos(θ)u+ sin(θ)v + tu

v′ = − sin(θ)u+ cos(θ)v + tv, (2)

where (tu, tv, θ) are transform parameters. The transform matrix
Tij of the pair (Pi,Pj) is

Tij =

⎛
⎜⎝

cos(θ) sin(θ) gtu

− sin(θ) cos(θ) gtv

0 0 1

⎞
⎟⎠ (3)

where g denotes the leaf size of the voxel grid filter.

C. Dictionary and Keyframe Database

BVMatch leverages the bag-of-words approach to extract
global descriptors and uses a keyframe database to detect the
best match frame of a query Lidar scan.

Bag-of-words approaches assume that similar structures in
the environment produce similar distributions of features. To
learn this distribution in our scene, we extract a rich set of
BVFT descriptors from the training BV images. We then apply
K-means clustering to obtain a total of b clusters. Each cluster
is a word, and the centroids of these words form a bag-of-words
dictionary. We use the dictionary to encode a point cloud in terms
of words by classifying the BVFT descriptors of the point cloud
which words they are. To weight those words that are frequent

and less discriminative, we use frequency-inverse document
frequency (TF-IDF) [4]. Finally, we get a global descriptor with
size b for every point cloud.

Keyfame database stores BV images with their global poses
and descriptors. A robot traverses a specific place and collects
Lidar scans along the way. By building a map of the place using
SLAM or GPS information, every Lidar scan collected in this
traversal is tagged with a global pose. We extract keyframe Lidar
scans every S meters the robot moves and generate a global
descriptor for every keyframe. The keyframe database is built
using all these global descriptors, poses, and BV images.

IV. PROPOSED BVFT DESCRIPTOR

Although BV image preserves the vertical structures that
are stable in a scene, it suffers severe intensity distortion due
to the sparsity nature of Lidar scans. To extract distinct local
descriptors, we first leverage Log-Gabor filters to compute the
local responses of BV images. We then construct a maximum
index map (MIM) [12] originally used for multi-modal image
matching. Finally, we build bird’s-eye view feature transform
(BVFT) that is insensitive to intensity and rotation variations of
BV images.

A. Maximum Index Map (MIM)

For simplicity, we use the polar coordinate to represent images
in the following. The polar coordinate (ρ, θ) of a Euclidean
coordinate (u, v) is defined as

ρ =
√
(u− ū)2 + (v − v̄)2

θ = arctan2(v − v̄, u− ū), (4)

where (ū, v̄) denotes the center position of an image.
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Fig. 2. A simple example illustrating the MIM rotation invariance.Pα is the rotated point cloud ofP .B andMIM are the BV image and MIM ofP , respectively.
Bα and MIMα are the BV image and MIM of Pα, respectively. It can be observed that the content of MIM and rotated MIMα are quite different. By shifting
(i), the difference map (e) tends to be zero which confirms the rotation invariance design.

We build MIM based on Log-Gabor filters [31]. The 2D Log-
Gabor filter in frequency domain is defined as

L(f, ω, s, o) = exp

(−(log(f/fs))
2

2(log(σf/fs))2

)
exp

(−(ω − ωo)
2

2σ2
ω

)
,

(5)
where fs and ωo are the center frequencies at scale s and
orientation o, σf and σω are width parameters. For a Log-Gabor
filter set of Ns scales and No orientations, the filters are de-
signed to evenly cover the spectrum. In our implementation, we
follow the scales setting in [12]. We select the orientations from
the set O = {0, π/No, 2π/No, . . ., (No − 1)π/No} and hence
ωo = oπ/No. Note that the frequency part of the 2D log-Gabor
filter is isotropic, which is essential for BVFT design.

We use a bank of Log-Gabor filters of Ns scales and No

orientations to build the MIM. For a Log-Gabor filter at scale s
and orientation o, Let L(ρ, θ, s, o) be the corresponding filter
of (5) in the spatial domain, A(ρ, θ, s, o) be the Log-Gabor
amplitude response of B(ρ, θ) at orientation o and scale s, we
have

A(ρ, θ, s, o) = ||B(ρ, θ) ∗ L(ρ, θ, s, o)||2, (6)

where ∗ represents the convolution operation. Then the Log-
Gabor amplitude response at orientation o is

A(ρ, θ, o) =
∑
s

A(ρ, θ, s, o). (7)

The maximum index map (MIM) is a map of the orientations
with the maximal Log-Gabor responses, that is

MIM(ρ, θ) = argmax
o

A(ρ, θ, o). (8)

B. BVFT Descriptor

The Log-Gabor filters, widely employed in image processing,
are jointly localized in position, orientation and spatial fre-
quency [31]. In BVFT, we employ Log-Gabor filters to capture

the orientation information of the rigid vertical structures in
scenes using (8). This makes MIM insensitive to intensity distor-
tion of BV images. However, MIM is still sensitive to rotation.
In the following we show that, by shifting the orientations in the
MIM with respect to a specified dominant orientation, rotation
invariance can be achieved.

Fig. 2(a) is a randomly selected Lidar scan P from the Oxford
RobotCar Radar dataset [32]. Fig. 2(f) is the rotated point cloud
Pα of P with a rotation angle α about the z-axis. Fig. 2(g) and
(b) are the corresponding BV images Bα and B related as

Bα(ρ, θ) = B(ρ, θ + α). (9)

Fig. 2(h) and (c) areMIMα andMIM respectively. It can be
observed that the contents of B and Bα are the same, while the
contents of MIM and MIMα are quite different. To eliminate
the rotation difference, we rotate MIMα by −α and obtain
Fig. 2(i). It is observed the difference of two MIMs shown
in Fig. 2(d) is significant. To obtain rotation invariance, this
difference should be eliminated.

We compute the Log-Gabor amplitude response of Bα with
orientation o, and have

Aα(ρ, θ, o) =
∑
s

||Bα(ρ, θ) ∗ L(ρ, θ, s, o)||2

=
∑
s

||B(ρ, θ + α) ∗ L(ρ, θ, s, o)||2. (10)

Since the frequency part of the 2D log-Gabor filter is isotropic
in the frequency domain (see (5)), every filter at scales s can be
obtained by rotating other filter at the same scale by some angle.
When α is an angle within the orientation set O,

L(f, ω, s, o) = L(f, ω + α, s, oα), (11)

where

oα = mod

(
o− α

No

π
,No

)
. (12)
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Here we use a mod operation on the orientation because the
No orientations form a ring structure [12]. Since 2D Fourier
transform is rotation invariant, the 2D spatial Log-Gabor filter
has the same property as the frequency one,

L(ρ, θ, s, o) = L(ρ, θ + α, s, oα). (13)

Substituting (13) to (10) yields

Aα(ρ, θ, o) =
∑
s

||B(ρ, θ + α) ∗ L(ρ, θ + α, s, oα)||2

= A(ρ, θ + α, oα). (14)

This means that the Log-Gabor response image Aα(ρ, θ, o)
can be obtained by rotating A(ρ, θ + α, oα) by α. Substituting
(14) to (8) yields

MIMα(ρ, θ) = argmax
o

Aα(ρ, θ, o)

= argmax
o

A(ρ, θ + α, oα)

= mod

(
MIM(ρ, θ + α)− α

No

π
,No

)
, (15)

which reveals that when the point cloud is rotated by any angle
within the orientation setO, its MIM can be obtained by a simple
circle shift operation on the MIM of the unrotated one. Fig. 2
validates the above analysis. Fig. 2(j) is the rotated and shifted
MIMα using (15). It can be observed from Fig. 2(e) that the
difference map is very small, in despite of the quantization error
of orientation set O.

We further extend the above analysis onto image patches and
design rotation invariant local descriptors. For every detected
keypoint, we find its dominant orientation. We build a local his-
togramh(o)of pixel values over a square MIM patchpatch(ρ, θ)
with J × J pixels centered at the keypoint. When computing the
histogram, the increments are weighted by a Gaussian window
function centered at the keypoint with mean (0,0) and standard
deviation (J/2, J/2). Suppose that the peak of the histogram
is at orientation om, i.e., om = argmaxo h(o), the dominant
orientation is

β = π
om
No

. (16)

Then we rotate the patch by β and shift the patch,

patchβ(ρ, θ) = mod(patch(ρ, θ + β)− om, No). (17)

With this treatment, the local patch is rotation invariant. We
divide the patch into l × l sub-grids and build a distribution
histogram for each sub-grid. These histograms are concatenated
to form a BVFT feature vector of size l × l ×No.

The above analysis is conducted under the assumption that
the rotation angles are within the orientation set O. However,
(11) and (15) still hold when the rotation angles are within
the set Ô = {π, (No + 1)π/No, (No + 2)π/No, . . ., (2No −
1)π/No}. Thus, we cannot determine whether the dominant
orientation is π om

No
or (2π − π om

No
) given om. To avoid this

ambiguity, we rotate every shifted MIM patch by π and assign
every keypoint with an additional descriptor generated using this
patch. When the rotation angle is not withinO or Ô, it is obvious

that (15) does not hold. In fact, BVFT can not cover continuous
orientation because the Log-Gabors are band-pass filters. In
practice, we have found that BVFT has good matching ability
in continuous orientation, and we will show that our BVFT has
excellent performance for the place recognition problem in the
experiment section.

V. EXPERIMENTS

We compare the place recognition capability of our BVMatch
with M2DP [19], PointNetVLAD [8], PCAN [10], LPD-Net [9]
and DH3D [11], among which the last four methods are deep
learning ones. We compare the pose estimation performance
with SIFT [2] (e.g., extracting SIFT descriptors from BV images
and using RANSAC for pose estimation), OverlapNet [25] and
DH3D. Note that DH3D can perform both place recognition
and pose estimation like BVMatch. The source codes of all
the competing methods are publicly available on the websites.1

For the sake of fairness, we fine-tuned all the deep learning
methods on the training sets of the individual datasets. For
M2DP and SIFT, we use the parameters provided by the authors.
For BVMatch, we empirically set the parameters as follows:
voxel grid size g = 0.4 meters, Log-Gabor filter frequency
scalesNs = 4 and orientationsNo = 6, local patch size J = 96,
number of subgrids l × l = 6× 6, and size of bag-of-words
dictionary b = 10000. Accordingly, the size of BVFT descriptor
is l × l ×No = 216.

A. Datasets

We conduct the experiments on three long-term and large-
scale datasets: Oxford RobotCar dataset [32], Oxford RobotCar
Radar dataset [33] and NCLT dataset [34].

1) Oxford RobotCar dataset: The Oxford RobotCar dataset
was created using a 2D LMS LiDAR sensor mounted on a car that
repeatedly drives through Oxford at different times traversing a
10 km route. It captures many different combinations of weather,
traffic, and pedestrians over one year. However, it only provides
2D Lidar scans. To make a 3D point cloud with enough points,
we use the relative pose between a previous scan and a recent
scan to accumulate sequential 2D Lidar scans with a trajectory
length of 80 m. The relative pose is obtained from GPS/IMU
readings. We select 45 sequences from the dataset for evaluating
(the same sequences used in PointNetVLAD [8]).

2) Oxford RobotCar Radar dataset: The Oxford RobotCar
Radar dataset was created at the same place as the Oxford Robot-
Car dataset in 7 days. It provides sparse 3D Lidar point clouds
generated by two Velodyne32-VLP LiDAR sensors mounted on
the left and right sides of a car. In this work, we only use the
data of the left Lidar. Since the sequences collected on the same
day are quite similar, we randomly select a sequence from each
day and get 7 sequences.

1https://github.com/LiHeUA/M2DP
https://github.com/mikacuy/pointnetvlad
https://github.com/XLechter/PCAN
https://github.com/Suoivy/LPD-net
https://github.com/JuanDuGit/DH3D
https://github.com/Suoivy/OverlapNet
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TABLE I
TRAINING AND TEST SETS OF THE DATASETS

Fig. 3. Average recalls with respect to the N-number of top candidates on different datasets.

TABLE II
AVERAGE RECALLS AT TOP-1% AND TOP-1

3) NCLT dataset: The NCLT dataset was created at the Uni-
versity of Michigan North Campus using a Velodyne32-HDL
LiDAR sensor with varying routes. It provides sparse 3D Lidar
point clouds. We use 11 sequences from the dataset to evaluate
the methods.

Note that the three datasets are of different characteristics.
Specifically, the Lidar scans in the Oxford Radar RobotCar
dataset and the NCLT dataset are sparser than those in the Oxford
RobotCar dataset due to the usage of different types of Lidar
sensor. We split the sequences in every dataset into training
and testing sequences. For the Oxford RobotCar dataset, we use
15 sequences collected in 2014 for training and 30 sequences
collected in 2015 for test. For the Oxford RobotCar Radar dataset
and the NCLT dataset, the sequence partition is summarized in
Table I. All the training sequences are sampled every 2 meters,
while the test sequences are sampled every 10 meters. Point
cloud data in a [−50 m, 50 m] cubic window of a frame are used
for all methods.

B. Place Recognition

We first train the bag-of-words dictionary in each dataset with
the training sequences. We then build keyframe databases with

Fig. 4. Evaluation of generalization ability in terms of average recalls with
respect to the N-number of top candidates. The methods are trained on the
Oxford RobotCar dataset and tested on the Oxford Radar Robotcar and NCLT
datasets.

TABLE III
AVERAGE RECALLS AT TOP-1% AND TOP-1 ON THE OXFORD RADAR

ROBOTCAR AND NCLT DATASETS FOR GENERALIZATION ABILITY EVALUATION

global descriptors for the test sequences. For every keyframe in a
sequence, we use the Euclidean distance of the global descriptors
to retrieve the best match from other sequences. The match is
positive if the ground truth distance of the matched frame is
less than t meters. We use Top-N recall to evaluate the place
recognition ability. Fig. 3 shows the average recall results at
Top-N with the ground truth threshold distance t = 25 meters.
Table II illustrates the average recalls at Top-1 and 1%. It can
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TABLE IV
POSE ESTIMATION RESULTS ON THE OXFORD ROBOTCAR AND THE NCLT DATASET

Fig. 5. Average recalls with respect to varying orientations on the two Oxford
datasets.

be observed that our BVMatch outperforms other methods in
every dataset.

To validate the generalization ability of the methods, we
train the deep learning based methods and the bag-of-words
dictionary on the Oxford Robotcar dataset and evaluate the
methods on the other two datasets. Fig. 4 illustrates that our
BVMatch outperforms the competitors on the Oxford Radar
dataset while is of moderate performance on the NCLT dataset.
Table III further shows that BVMatch ranks first at Top-1% and
ranks second at Top-1 on the Oxford Radar dataset, but does not
perform very well on the NCLT dataset.

Robustness to orientation variance is important since the robot
may have arbitrary headings in real-world applications. Since
BVFT is rotation invariant, BVMatch is inherently orientation
invariant. We evaluate place retrieval ability of the methods
with varying orientations on the sequences 2015-02-03 and
2015-02-10 in the Oxford RobotCar dataset and on the se-
quences 2019-01-14-12-05-52 and 2019-01-15-13-
53-14 in the Oxford Radar RobotCar dataset. The average
recall at Top-1 at every rotation angle is shown in Fig. 5. It is
observed that the recall rates of DH3D are relatively stable while
other deep learning methods drop dramatically when the angle
deviates from 0◦. Our BVMatch performs closely to DH3D on
the Oxford RobotCar dataset, but much better than DH3D on
the Oxford Radar RobotCar dataset in which the Lidar scans are
more sparse. Note that the recall curve of BVMatch is fluctuant
due to the angle quantization of the orientation set O.

An extension evaluation on retrieval ability with respect to
the distance threshold t is shown in Fig. 6(a). It is clear that
BVMatch performs better than other methods under various
distance threshold settings.

We conducted an experiment on the Oxford Radar RobotCar
dataset to investigate the influence of Log-Gabor filter

Fig. 6. Parameter study. (a) Average recalls at Top-1 with respect to varying
distance thresholds on the Oxford RobotCar dataset. (b) Average recalls at Top-1
with respect to orientation numbers No and dictionary size b on the the Oxford
Radar RobotCar dataset.

orientations No and the dictionary size b. Fig. 6(b) shows
that when No and b increase, the average recall at Top-1 grows
and saturate at about No = 6 and b = 10000.

C. Pose Estimation

We evaluate the performance of pose estimation on the
sequences 2015-02-03 and 2015-02-10 of the Oxford
RobotCar dataset and on the sequences 2012-02-04 and
2012-01-15 of the NCLT dataset. In the evaluation, we
retrieve the best match of each query frame in a sequence (e.g.,
2015-02-03) from the other sequence in the same dataset
(e.g., 2015-02-10). We obtain 752 matched pairs from the
Oxford dataset and 969 pairs from the NCLT dataset. Since the
ground truth poses in the Oxford dataset are biased, we align the
Lidar pairs by ICP and regard the aligned results as the ground
truth.

Our BVMatch uses the BVFT descriptor with RANSAC to
find the relative poses. We compared BVMatch with SIFT [2],
OverlapNet [25] and DH3D [11]. Since OverlapNet is only
suitable for single 3D scans and cannot use the data accumulated
from 2D Lidar scans in the Oxford dataset, we only evaluate
OverlapNet on the NCLT dataset. For fair comparison, we
fine-tuned OverlapNet and DH3D on the datasets. We compute
the relative translation error (RTE) and the relative rotation error
(RRE). We regard the pose as a successful estimation when the
RTE and RRE are below 2 meters and 5◦, respectively. Table IV
shows that, on the Oxford dataset, our BVMatch achieves the
best RRE while performs slightly worse than DH3D on the RTE
and SR metrics. On the NCLT dataset, BVMatch outperforms
the competitive methods by a large margin. This further validates
the superiority of BVMatch in handling sparse Lidar scans.
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D. Runtime Evaluation

We implemented the BVFT descriptor generation and
RANSAC using C++ and implemented BVMatch framework
using Python. Our platform running the experiments is a desktop
computer equipped with an Intel Quad-Core 3.40 GHz i5-7500
CPU and 16 GB RAM. The average time cost for each frame
is 0.29 seconds to extract BVFT descriptors, 0.02 seconds to
generate a global descriptor, 0.05 seconds to perform retrieval,
and 0.23 seconds to register BV image pair using RANSAC.
The total time cost for each frame is 0.59 seconds.

VI. CONCLUSION

This letter has presented BVMatch, a novel Lidar-based
frame-to-frame place recognition method. The method employs
bird’s-eye view (BV) image as the intermediate representation
of point cloud, and introduces the BVFT descriptor to perform
match. Compared with the state-of-the-arts, BVMatch is more
efficient in place recognition and is able to estimate 2D relative
poses. In our future work, we will focus on further reducing its
time complexity and improving its generalization ability.
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