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a b s t r a c t 

Nowadays, most classification networks use one-hot encoding to represent categorical data because of 

its simplicity. However, one-hot encoding may affect the generalization ability as it neglects inter-class 

correlations. We observe that, even when a neural network trained with one-hot labels produces in- 

correct predictions, it still pays attention to the target image region and reveals which classes confuse 

the network. Inspired by this observation, we propose a confusion-focusing mechanism to address the 

class-confusion issue. Our confusion-focusing mechanism is implemented by a two-branch network ar- 

chitecture. Its baseline branch generates confusing classes, and its FocusNet branch, whose architecture is 

flexible, discriminates correct labels from these confusing classes. We also introduce a novel focus-picking 

loss function to improve classification accuracy by encouraging FocusNet to focus on the most confusing 

classes. The experimental results validate that our FocusNet is effective for image classification on com- 

mon datasets, and that our focus-picking loss function can also benefit the current neural networks in 

improving their classification accuracy. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Neural network based image classification has received much 

ttention in recent years due to the impressive performance of 

eep learning [1,3,4] . Most classification networks use one-hot 

ncoding to represent categorical data. However, this encoding 

ethod neglects inter-class correlations, and may cause over-fitting 

s it tends to make the network produce overconfident predictions 

n the training sets [5,6] . To address this problem, label smoothing 

egularization [5] introduces a uniform distribution to encode cor- 

elations between classes, which encourages networks to be less 

onfident. Considering the uniform distribution is independent of 

he training data, some approaches [4,7] use soft targets to replace 

t with a learned distribution. Alternatively, DropMax [8] drops 

on-target classes to select similar ones that confuse networks 

y using an additional multilayer perceptron. To our knowledge, 

here are few works exploring the confusing-class correlation for 

he purpose of image classification. 

In this work, we propose the confusion-focusing mechanism 

nd a focus-picking loss function to handle the class-confusion 

ssue. Fig. 1 illustrates the overall architecture of our confusion- 

ocusing mechanism, which consists of a baseline branch and a 

ocusNet branch. The baseline network is pre-trained to produce 

eference predictions. FocusNet, which can be implemented us- 
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ng common models such as ResNet [1] and MobileNet [3] , iden- 

ifies confusing classes and difficult samples based on the output 

f the baseline network. Furthermore, our proposed focus-picking 

oss function focuses more on these confusing classes and assigns 

arger losses to difficult samples in the training stage. It is worth 

oting that, only the FocusNet branch is needed for inference, so 

ur approach does not add extra computing complexity. With this 

trategy, FocusNet can effectively improve the performance of the 

aseline network. As illustrated in Fig. 1 (b) and (c), compared with 

he baseline network, FocusNet pays more attention to the tar- 

et region and produces the correct prediction. To summarize, the 

ain contributions of this work are threefold: 

• We propose the confusion-focusing mechanism implemented 

by a two-branch network architecture to address the challeng- 

ing class-confusion issue. The FocusNet branch can improve the 

performance by focusing on confusing classes derived from the 

baseline branch without adding extra computing complexity 

during inference. 
• We introduce a focus-picking loss function for network training. 

Compared with normal cross-entropy, our loss function enables 

the network to focus on confusing classes and assign larger 

losses to difficult samples. 
• We experimentally validate on various datasets that FocusNet 

outperforms the existing approaches in addressing the class- 

confusion issue, and that our focus-picking loss function can 

benefit the current knowledge distillation method in the accu- 

racy improvement. 

https://doi.org/10.1016/j.patcog.2022.108709
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. The overall architecture of our confusion-focusing mechanism. (a) Training and inference framework of our approach. After training, only the FocusNet branch is 

needed for inference. (b) Prediction of the baseline network. (c) Predictions of our FocusNet. The pictures next to the bar charts are Ridgeback’s CAM (green border) and 

Dingo’s CAM (red border). Note that the baseline and FocusNet can use the same or different network architectures. Here, for demonstration, the network architectures are 

both ResNet-18 [1] , and the dataset is Imagewoof [2] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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. Related work 

We briefly review the related works of network architecture de- 

ign and loss function design, which are relevant to our novel net- 

ork mechanism and loss function proposed in this work. 

.1. Network architecture design 

Over the past decade, many advanced network architectures 

ave been introduced to improve accuracy in image classification, 

ncluding networks that increase in depth [1] , width [5] , cardinal- 

ty [9] and scale [10] . Recently, inter-class correlations [4,5] and at- 

ention mechanisms [11,12] , as two approaches to further improve 

he performance of existing networks, have attracted much atten- 

ion. 

It has been found that learning inter-class correlations is an ef- 

ective way to improve the generalization ability because it pre- 

ents the networks from producing overconfident predictions [5] . 

here are two main ways to use the correlation between classes. 

he first way uses the manually designed distribution over classes, 

hich does not change the original network architecture. For ex- 

mple, label smoothing regularization [5] mixes a uniform distri- 

ution with the ground-truth distribution by a smoothing factor. 

he work [13] introduces a random relationship between classes 

y encouraging networks to produce high entropy output distribu- 

ion. The second way uses the learned distribution for each sample 

nd typically designs a network architecture. For example, the label 

mbedding network [14] generates a soft distribution to represent 

he continuous interactions between classes. RDCN [15] introduces 

 relation network to measure the relationship between the visual 

eatures and embedded semantics. Knowledge distillation [4] intro- 

uces soft targets to replace the hand-designed distribution. Stan- 

ard knowledge distillation [4,16] is a combination of a pre-trained 

eacher model, and a smaller student model to be deployed. The 

ecent self-knowledge distillation mechanism [17,18] refines knowl- 

dge using an auxiliary self-teacher model. Teach-free knowledge 

istillation [7] combines the knowledge distillation and the la- 

el smoothing regularization to produce a more accurate distribu- 

ion over classes. Instead of considering the correlation between 

ll classes, DropMax [8] learns the class retain probability of each 

ample to drop non-target classes and select the confusing ones. 

Another effective approach to improve the accuracy of networks 

s to use the attention mechanism. For example, VINet [11] in- 

egrates human visual attention into neural networks in image 

lassification and object detection. AE-Net [19] refines channel 

nd spatial attention to retrieve fine-grained sketch-based im- 

ges. DAAF [12] learns global and local attention aware features 

o improve the accuracy of person re-identification. Progressive- 
2

ttention network [20] localizes discriminative parts at multiple 

cales progressively. 

The main difference between these methods and our work 

s that FocusNet establishes the relationship between confusing 

lasses and network attention. In addition, our FocusNet does not 

hange the architecture of the original network, and does not add 

xtra computing complexity during inference. 

.2. Loss function design 

In supervised learning, networks are trained through an op- 

imization process that minimizes a loss function. In this case, 

ost networks for multi-class classification use the softmax cross- 

ntropy as their loss function [1] . Minimizing the cross-entropy 

s equivalent to minimizing the Kullback-Leibler divergence (here- 

fter written as KL divergence) when measuring the degree of 

issimilarity between empirical distribution and model distribu- 

ion [21] . Currently, some variants of the softmax cross-entropy 

ave been introduced to solve task-specific issues [4,8,22] . Fo- 

al loss [22] addresses the class imbalance problem by introduc- 

ng a tunable weighting factor to the cross-entropy. Adjusting this 

eighting factor allows networks to reduce relative losses for well- 

lassified samples and focus more on hard and misclassified ones. 

ropMax [8] focuses on confusing classes by dropping non-target 

ogits in the softmax layer, which uses the Bayesian inference to 

alculate class retain probabilities and uses variational inference to 

ptimize parameters. Knowledge distillation [4] transfers knowl- 

dge from a large teacher to an easy-deployed student by mini- 

izing the KL divergence of soft targets between the teacher and 

he student, which is mathematically equivalent to optimizing the 

ean square error of logits between the two models. LSA [23] con- 

iders the low-rank structure of the reconstruction data in tackling 

he domain bias problem. 

Unlike the above methods, our focus-picking loss function 

ainly considers the most confusing inter-class interactions and 

ssigns larger losses to more difficult samples. 

. Proposed method 

In this section, we first introduce our motivation. Then, we 

laborate on the proposed FocusNet and the focus-picking loss 

unction. To better clarify the concept of focus-picking loss, we also 

nalyze its mathematical mechanism. 

.1. Motivation 

We notice that similar classes tend to confuse networks. As il- 

ustrated in Fig. 1 (b), the baseline network yields an incorrect pre- 

iction. The ground-truth class is Dingo, but the top-1 predicted 
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ne is Ridgeback. Nevertheless, the CAM of the class Dingo (red 

order) shows that the baseline network has paid attention to the 

arget image region, i.e. the Dingo’s body. In other words, the base- 

ine network has noticed the correct class, but it is confused by in- 

orrect classes and cannot make the correct prediction. Inspired by 

his, we aim to address the class-confusion issue by making net- 

orks discriminate the correct class from these confusing ones. 

Fig. 1 (a) illustrates our proposed confusion-focusing mecha- 

ism, which combines a pre-trained baseline network branch (for 

enerating reference distributions at training time) and a Focus- 

et branch (for making predictions). It is worth noting that the 

ocusNet branch is not restricted to a specific network architec- 

ure. It uses the reference distribution derived from the baseline 

etwork to determine confusing classes based on the above obser- 

ation. In addition, FocusNet compares the probability on the cor- 

ect class with the reference distribution to identify difficult sam- 

les. In this context, we design the focus-picking loss function to 

ocus on picking the correct class from the confusing ones during 

raining. The baseline network branch is removed during inference 

o keep the model size of our approach unchanged. With this ap- 

roach, Fig. 1 (c) shows that our FocusNet correctly predicts Dingo. 

esides, the CAM of the class Dingo (red border) illustrates that 

ur FocusNet pays more attention to the target image region. 

From the perspective of requiring prior knowledge from a pre- 

rained network, the network architecture of our approach is simi- 

ar to standard knowledge distillation to some extent. But we have 

alidated that our confusion-focusing mechanism is effective even 

hen 1) the pre-trained baseline network uses various network 

cales, i.e. , the same as, or larger or smaller than FocusNet archi- 

ecture, and 2) the pre-trained network is highly incorrect. In com- 

arison, however, the standard knowledge distillation generally re- 

uires a larger and more accurate pre-trained model. Please refer 

o Section 3.6 for more detailed analysis. 

.2. Confusion-focusing mechanism 

As mentioned, our confusion-focusing mechanism can obtain 

onsistent performance improvements with a variety of network 

rchitecture combinations. Fig. 1 (a) illustrates an example pipeline 

hat adopts ResNet-18 [1] as the network architecture of the base- 

ine network branch and the FocusNet branch. 

.2.1. Training and inference of the baseline network branch 

Given an input, the baseline network branch in Fig. 1 (a) pro- 

uces logits z b through a sequence of convolutional layers and a 

ully-connected layer. Then the resulting logits are converted to the 

robability distribution ˆ y b using a softmax function. The process 

an be formulated as 

 

b = 

(
W 

b 
)T 

h 

b , (1) 

ˆ 
 

b 
n = 

exp (z b n ) ∑ N 
j=1 exp (z b 

j 
) 
, (2) 

here matrix W 

b = 

(
w 

b 
1 
, w 

b 
2 
, · · · , w 

b 
N 

)
contains the weights and bi- 

ses of the fully-connected layer in the baseline network branch, 

nd the column vector w 

b 
n , 1 ≤ n ≤ N, denotes the template of the

 -th class [6] . Vector h 

b contains the activations of the penultimate 

ayer concatenated with “1” accounting for the bias. z b n and ˆ y b n de- 

ote the n -th entries of the vectors z b and ˆ y b , respectively. 

The baseline network branch is trained by computing the cross- 

ntropy between the one-hot label y and probabilities ˆ y b , 

 

b = H(y , ̂  y b ) 

= −
N ∑ 

n =1 

y n log ( ̂  y b n ) , 
(3) 

here y n denotes the n -th entry of y . 
3 
.2.2. Training and inference of the FocusNet branch 

Our FocusNet is trained on the same dataset by minimizing the 

roposed focus-picking loss function. Specifically, the green arrows 

n Fig. 1 (a) illustrate that the training framework of our approach 

onsists of a pre-trained baseline network branch and a Focus- 

et branch. We note that the baseline branch is fixed when train- 

ng our FocusNet. Each training sample is fed into both branches 

t the same time to produce two sets of logits and probabilities. 

hen, FocusNet uses the logits of the baseline branch to deduce 

he multi-warm label that represents the confusing classes. In ad- 

ition, FocusNet compares the probabilities on the ground-truth 

lass with the baseline prediction to determine if the training sam- 

le is difficult to classify. Our focus-picking loss function encour- 

ges FocusNet to learn the multi-warm label and adaptively tunes 

ts value according to the classification difficulty of the training 

ample. 

After completing the training stage, we only need the FocusNet 

ranch for inference, as the red arrow in Fig. 1 (a) indicates. As a 

esult, our approach adds no extra computing complexity during 

nference. 

.3. Multi-warm label 

To guide the computation of FocusNet attention, we employ 

he pre-trained baseline network branch to determine confusing 

lasses for each training sample, mathematically represented as a 

ulti-warm label. Specifically, the baseline network generates log- 

ts over classes based on Eq. (1) . In this context, the logit z b n =
w 

b 
n 

)T 
h 

b of the n -th class measures the correlation between the 

ector h 

b and the template w 

b 
n . A positive or negative correlation 

alue indicates that the vector and the template point in close or 

pposite directions, while a zero value indicates that they are or- 

hogonal. 

The n -th entry of the multi-warm label vector is defined as 

 

′ 
n = 

{
1 , if z b n > 0 

0 , if z b n ≤ 0 . 
(4) 

hen, we add the ground-truth label of the training sample to the 

ulti-warm label and clip it for learning stability [8] , 

 

′′ 
n = min 

(
1 , l ′ n + y n 

)
. (5) 

fter normalizing each label entry by 

 n = 

l ′′ n ∑ N 
j=1 l 

′′ 
j 

, (6) 

e obtain the final multi-warm label l = (l 1 , l 2 , · · · , l N ) 
T . The non-

ero entries of the label vector l have the same probability and 

um to 1.0. 

The multi-warm label reflects the attention of the pre-trained 

aseline network. In other words, it converts the implicit atten- 

ion of the baseline network into explicit knowledge that FocusNet 

an learn directly. In Fig. 2 , we show the prediction examples of 

hree scenes, each of which contains the CAMs of different classes, 

he corresponding logits, and the multi-warm labels. For Scene-A , 

he baseline network pays attention to Beagle (index: 2, ground 

ruth), Samoyed (index: 8), and Dingo (index: 9). It generates pos- 

tive logits on these classes as they are similar in appearance, im- 

lying that the multi-warm label reflects the attention of the base- 

ine network. Scene-B and Scene-C both contain Dingoes, but with 

ifferent fur colors (yellow and white, respectively). The baseline 

etwork generates significantly different CAMs and multi-warm la- 

els, demonstrating that the multi-warm labels are adaptive. In 

his context, the multi-warm label can indicate which classes are 

onfusing. 
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Fig. 2. The relationship between the attention of the pre-trained baseline network and our proposed multi-warm label. The pre-trained baseline network processes the 

input image in each scene to generate CAMs, logits, and the multi-warm label. CAMs highlight discriminative image regions for corresponding classes. The positive and 

negative logits are marked in red and gray, respectively. Non-zero entries of the multi-warm label and the CAMs of confusing classes are marked in red bars and red borders, 

respectively. The “Class” row presents categorical indexes and categorical names. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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f

.4. Loss function 

FocusNet converts logits z into predicted probabilities ˆ y , com- 

uted by 

ˆ 
 n = 

exp ( d n + z n ) ∑ N 
j=1 exp 

(
d j + z j 

) . (7) 

ere, 

 n = 

exp (z n ) ∑ N 
j=1 exp (z j ) 

− exp (z b n ) ∑ N 
j=1 exp (z b 

j 
) 
, (8) 

s the n -th entry of the vector d . z n and ˆ y n are the logit and the

redicted probability of FocusNet on the n -th class, respectively. 

ector d denotes the probability difference over classes between 

ocusNet and the pre-trained baseline network. The normal soft- 

ax probability distribution in Eq. (2) is a special case of the re- 

eighted probability distribution in Eq. (7) when d = 0 . For nota- 

ion simplicity, we denote the normal and re-weighted probability 

istributions of FocusNet as ˆ y (z , d = 0 ) and ˆ y (z , d ) , respectively. A

ositive difference on the ground-truth class means that the input 

s a relatively easy sample since FocusNet generates a more confi- 

ent prediction than the baseline network. In contrast, a negative 

ifference corresponds to a relatively difficult sample. Here, the 

ole of difference is to force FocusNet to tune the weights for logits 

o that easy samples and difficult samples can produce higher and 

ower probabilities on the ground-truth class, respectively. Then, 

e compute the cross-entropy between the re-weighted probabili- 

ies and the ground-truth label as the classification loss 

 cls = H 

(
y , ̂  y (z , d ) 

)
= −

N ∑ 

n =1 

y n log 
(

ˆ y n (z , d ) 
)

= − log 

(
exp (d t + z t ) ∑ N 
j=1 exp (d j + z j ) 

)
, 

(9) 

here index t refers to the ground-truth class. This allows Focus- 

et to take the prediction from the pre-trained baseline network 

s a reference and assigns larger losses to those relatively difficult 

amples (see Section 3.5 for more details). At test time, FocusNet 

omputes the prediction by setting d = 0 , i.e. the normal softmax 

unction. 

To make FocusNet pay more attention to confusing classes dur- 

ng training, we propose to regularize it by minimizing the cross- 

ntropy between normal softmax probabilities and the multi-warm 
4 
abel. That is, 

 attention = H 

(
l , ̂  y (z , d = 0 ) 

)
= −

N ∑ 

n =1 

l n log 
(

ˆ y n (z , d = 0 ) 
)

= −
N ∑ 

n =1 

l n log 

(
exp (z n ) ∑ N 
j=1 exp (z j ) 

)
. 

(10) 

his regularization encourages FocusNet to produce higher proba- 

ilities on confusing classes than the others. For example, Scene-B 

n Fig. 2 shows that the baseline network is confused by classes 

, 2, 4, and 9, respectively. Using our approach in Eq. (10) , Focus- 

et generates higher probabilities on these four classes than the 

thers, as shown in the FocusNet branch of Fig. 1 (c). 

Last but not least, minimizing the classification loss in 

q. (9) encourages FocusNet to make more confident predictions 

n ground-truth classes than the baseline network. This may pro- 

uce overconfident distributions, i.e. low entropy distributions [13] . 

o reduce this potential degradation, we penalize the low-entropy 

istributions computed as 

 entropy = H 

(
ˆ y (z , d = 0 ) 

)
= −

N ∑ 

n =1 

ˆ y n (z , d = 0 ) log 
(

ˆ y n (z , d = 0 ) 
)

= −
N ∑ 

n =1 

exp (z n ) ∑ N 
j=1 exp (z j ) 

log 

(
exp (z n ) ∑ N 
j=1 exp (z j ) 

)
. 

(11) 

dding negative entropy to the classification loss allows FocusNet 

o produce smoother probability distributions with higher entropy 

nd thus contributes to better generalization, which is similar to 

abel smoothing regularization [5] . 

To train FocusNet, we propose the focus-picking loss function, 

hich consists of the three components described above. It is de- 

ned as 

 = L cls + αR attention − βR entropy 

= H 

(
y , ̂  y (z , d ) 

)
+ αH 

(
l , ̂  y (z , d = 0 ) 

)
− βH 

(
ˆ y (z , d = 0 ) 

)
. 

(12) 

t encourages FocusNet to generate larger losses on relatively dif- 

cult samples, focus on confusing classes, and prevent the low- 

ntropy output distributions at the same time. We experimentally 

nd that setting α = β = 1 works well. 

.5. Analysis of the focus-picking loss function 

Different from traditional loss functions, our focus-picking loss 

unction considers confusing inter-class correlations and assigns 
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Fig. 3. The impact of d t on L cls . d t denotes the probability difference on the cor- 

rect class between FocusNet and the baseline network. The two descriptions in the 

illustration present our motivation for designing L cls . 
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Table 1 

The datasets we used in this work. “N” is the number of classes, “# Training” and 

“# Validation” represent the number of images in the training and validation sets, 

respectively. 

Datasets N # Training # Validation 

1. MNIST [25] 10 60,000 10,000 

2. CIFAR-10 [26] 10 50,000 10,000 

3. Imagewoof [2] 10 9,025 3,929 

4. CIFAR-100 [26] 100 50,000 10,000 

5. ImageNet Dogs [27] 118 147,873 5,900 

6. Stanford Dogs [28] 120 12,000 8,580 

7. CUB-200 [29] 200 5,994 5,794 

8. Tiny ImageNet [30] 200 100,000 10,000 

9. ImageNet [31] 1,000 1,281,167 50,000 
arger loss values to those difficult samples. For instance, the 

idely used cross-entropy with one-hot labels does not consider 

he interaction between classes [5] and the difficulty of each sam- 

le. KL divergence with soft targets is usually used in knowledge 

istillation [4,7] . But the soft targets tend to be a uniform distri- 

ution when the temperature is high [24] , so it can not empha- 

ize the importance of confusing classes. The focal loss [22] is a 

ynamically scaled cross-entropy to address the class imbalance 

roblem in object detection, but it also does not consider the class- 

onfusion issue. 

We first explain the data term L cls . It takes the probability dis- 

ribution derived from the baseline network as a reference, down- 

eights the contribution of easy samples during training, and 

apidly enables FocusNet to focus on difficult samples. We rewrite 

q. (9) as 

 cls = − log 

(
exp (d t + z t ) ∑ N 
j=1 exp (d j + z j ) 

)

= − log 

( 

exp (z t ) 

exp (z t ) + 

∑ N 
j � = t 

exp (d j ) 

exp (d t ) 
exp (z j ) 

) 

, 

(13) 

here d t = ˆ y t (z , d = 0 ) − ˆ y b t denotes the probability difference on

he ground-truth class between FocusNet and the baseline net- 

ork. 

Fig. 3 shows that L cls becomes progressively smaller as d t 
hanges from negative to positive. Specifically, a negative d t in- 

icates that FocusNet has lower confidence on the correct class 

han the baseline network, which implies the sample is difficult, 

nd thus L cls is large. A positive d t means the sample is easy, and 

ence L cls is small. 

R attention encourages FocusNet to focus on the classes that con- 

use the baseline network. One can compute the derivative of 

 attention with respect to logits z as 

∂ R attention 

∂z 
= ˆ y (z , d = 0 ) − l , (14) 

here l is the multi-warm label encoding confusing classes, 

ˆ  (z , d = 0 ) is the predicted probability distribution of FocusNet. 

aking the derivative equal to 0 enables FocusNet to generate 

igher probabilities over the confusing classes while penalizing the 

utputs of irrelevant classes. 

R entropy prevents FocusNet from producing over-confident pre- 

ictions [13] . It is necessary because L encourages FocusNet to 
cls 

5 
ake more confident predictions on correct classes than the base- 

ine network, as discussed in Section 3.4 . 

.6. Differences from standard knowledge distillation 

Our proposed confusion-focusing mechanism differs from stan- 

ard knowledge distillation mainly in the following four aspects: 

1) Motivations are different. As described in Section 3.1 , our moti- 

vation is to make FocusNet discriminate the correct class from 

the most confusing ones. But standard knowledge distillation 

aims to transfer knowledge from a teacher (a larger model 

or an ensemble of models) to a student (an easy-to-deployed 

model). We have validated in Table 9 that a poorly pre-trained 

network has less influence on our FocusNet than on the knowl- 

edge distillation. 

2) In the case of learning confusing classes, the network architec- 

tures are different. FocusNet only trains one model. It directly 

makes predictions without using the pre-trained baseline net- 

work at test time. However, in the case of learning confusing 

classes, standard knowledge distillation needs to train a set of 

specialist models. It first runs a pre-trained generalist model to 

decide which specialist models are relevant at test time. Then 

these specialist models are run to determine the final predic- 

tion (please refer to Section 5 and Section 7 in standard knowl- 

edge distillation [4] for more details). Therefore, our proposed 

FocusNet is more efficient for learning confusing classes. 

3) Labels are different. Our proposed multi-warm label empha- 

sizes the importance of confusing classes. Soft targets [4] of 

standard knowledge distillation considers connections between 

all classes, but they are difficult to reflect the relationship be- 

tween confusing classes. A convincing example is that as the 

temperature increases, the soft target tends to be a uniform dis- 

tribution [24] , which means that the correct class has a close 

probability of being similar to all other classes. 

4) Loss functions are different. The proposed focus-picking loss 

function enables FocusNet to focus on confusing classes and 

assign larger losses to more difficult samples (as described in 

Section 3.5 ). The distillation loss function enforces the student 

model to learn soft targets of the teacher model [4] . We have 

validated in Table 7 that replacing the distillation loss function 

with our focus-picking loss function can further improve the 

performance of the state-of-the-art distillation methods. 

. Experiments 

.1. Datasets 

Table 1 lists the datasets used in our experiments, including 

oth fine-grained datasets (Nos. 6 and 7) and datasets of differ- 

nt scales. We choose the fine-grained dataset considering that it 

ontains a large number of confusing classes. 
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Table 3 

Classification accuracy (%) on ImageNet. The numbers in parentheses represent the 

accuracy difference between our FocusNet and the baseline network. 

Model Methods Top-1 Top-5 

ResNet-18 
Baseline 69.76 89.08 

FocusNet (Ours) ( + 0.66) 70.42 ( + 0.48) 89.56 

ResNet-34 
Baseline 73.31 91.42 

FocusNet (Ours) ( + 1.04) 74.35 ( + 0.47) 91.89 

Table 4 

Model complexity comparison of different network architectures. 

Methods MobileNetV2 ResNet-18 ResNet-34 

Params (M) 0.94 11.27 21.38 

FLOPs (G) 0.02 4.46 9.29 
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MNIST [25] is a handwritten digits dataset with images of size 

8 × 28. It consists of 10 classes, with 60,0 0 0 training images and

0,0 0 0 validation images. 

CIFAR-10 and CIFAR-100 [26] have 10 and 100 classes, respec- 

ively. They both contain 50,0 0 0 training images and 10,0 0 0 vali-

ation images. The size of the images is 32 × 32 × 3. 

Imagewoof [2] contains 10 dog breeds that are not easy to clas- 

ify. It contains 9025 training images and 3929 validation images. 

ImageNet Dogs [27] is composed of all dog breeds in the Ima- 

eNet dataset [31] . It has 118 classes with 147,873 images for train- 

ng and 5900 images for validation. All images have been down- 

ampled to 64 × 64 × 3 pixels. 

Stanford Dogs [28] is a fine-grained dog breeds dataset. It con- 

ains 120 classes and 20,580 images, with 12,0 0 0 images for train- 

ng and 8580 ones for validation. 

CUB-200 [29] is a fine-grained bird species dataset. It con- 

ains 200 classes with 5994 training images and 5794 validation 

mages. 

Tiny ImageNet [30] is a subset of the ImageNet dataset [31] . 

his dataset contains 200 classes, each of which has 500 train- 

ng images and 50 validation images. All images have been down- 

ampled to 64 × 64 × 3 pixels. 

ImageNet [31] is a large-scale dataset. It has 10 0 0 classes, 1.2 

illion training images and 50,0 0 0 validation images. 

.2. Implementation details 

We use LeNet-5 [25] for experiments on MNIST, use the stan- 

ard ResNet-18 [1] and MobileNetV2 [3] for experiments on Image- 

oof, Stanford Dogs and CUB-200, and use the standard ResNet- 

8 and ResNet-34 for experiments on ImageNet. Because the stan- 

ard ResNet-18 and MobileNetV2 down-sample input images by 

 factor of 32. To adapt them to small image sizes, we mod- 

fy the first convolutional layer of ResNet-18 by setting the ker- 

el size to 3 × 3, the stride to 1, and the padding size to 1 as

ell. The max-pooling layer is removed. For MobileNetV2, we ad- 

ust the stride of the first and fourth convolutional layers to 1. As 

 result, the modified ResNet-18 and MobileNetV2 down-sample 

nput images by a factor of 8. Therefore, we use the modified 

esNet-18 and MobileNetV2 for experiments on CIFAR-10, CIFAR- 

00, Tiny ImageNet, and ImageNet Dogs. We follow the standard 

peration in MobileNetV2 [3] and uniformly multiply the width by 

.5 at each layer, which leads to a smaller and faster MobileNetV2 

0.94 M Parameters and 0.02 G FLOPs) than ResNet-18 (11.27 M 

arameters and 4.46 G FLOPs). We use the identical network ar- 

hitecture for the baseline network and FocusNet if not otherwise 

pecified. 

For all experiments, we use stochastic gradient descent (SGD) 

ith the initial learning rate of 0.1, the momentum of 0.9, and 

he weight decay of 0.0 0 01. For MNIST, CIFAR-10, CIFAR-100, Im- 

gewoof, Stanford Dogs, and CUB-200, we set the total number of 

pochs to 200 and divide the learning rate by 10 at epochs 100 and

50. For ImageNet Dogs, Tiny ImageNet, and ImageNet, we set the 

otal number of epochs to 90 and divide the learning rate by 10 

t epochs 30 and 60. We do not use data augmentation for MNIST, 

ut standard augmentation for the others, i.e. random cropping and 

ipping. 
able 2 

omparisons of top-1 validation accuracy (%) with baseline and DropMax. The best one

rchitecture is LeNet-5 [25] . For the other datasets, the network architecture is ResNet-18

Methods MNIST CIFAR-10 Imagewoof CIFAR-100 

Baseline 99.31 92.43 84.43 74.52 

DropMax [8] 99.43 93.70 86.87 74.59 

FocusNet (Ours) 99.56 94.86 86.94 78.29 

6

.3. Performance evaluation 

In the following, we evaluate the performance of FocusNet in 

erms of classification accuracy, compared with DropMax [8] and a 

umber of state-of-the-art knowledge distillation methods includ- 

ng [7,17,18,32–34] , and [35] . 

.3.1. Comparisons with DropMax 

We validate our proposed FocusNet on all datasets and com- 

are it with DropMax [8] , because they both aim to focus on the 

onfusing classes and ignore the irrelevant ones. For a fair com- 

arison, we use the same network architecture for DropMax, the 

aseline network, and FocusNet. 

Table 2 shows the top-1 validation accuracy. We have two ob- 

ervations. (1) Both DropMax and our FocusNet improve the per- 

ormances of the baseline network on all datasets, which implies 

hat focusing on confusing classes is an effective strategy for clas- 

ification. (2) Our FocusNet is more accurate than DropMax, espe- 

ially on the fine-grained datasets. 

Table 3 shows the classification performance of our FocusNet 

n the ImageNet dataset. We did not compare it with DropMax be- 

ause our experiments show that FocusNet constantly outperforms 

ropMax. Our FocusNet using ResNet-18 and ResNet-34 as net- 

ork architectures consistently achieves better performance, which 

eans that FocusNet scales well on different models. 

.3.2. Comparisons with knowledge distillation 

We compare our FocusNet with knowledge distillation [4] be- 

ause they both use knowledge from another network during train- 

ng. However, as described in Section 3.6 , FocusNet is essentially 

ifferent from the knowledge distillation. 

In our confusion-focusing mechanism, the architectures of the 

aseline branch and the FocusNet branch can be the same or 

ifferent. Similarly, knowledge distillation can also use different 

etwork combinations. We also evaluate the classification perfor- 

ance in an extreme case where a poorly-trained and small model 

uides a large model. 

We select MobileNetV2 [3] , ResNet-18 [1] or ResNet-34 [1] as 

he network architecture in the following experiments. Table 4 

ompares their model complexity. We choose three network com- 

inations on most datasets, i.e. , “ResNet-18 → MobileNetV2”, 
s are bolded, and the second-best ones are underlined. For MNIST, the network 

 [1] . 

CUB-200 Stanford Dogs Tiny ImageNet ImageNet Dogs 

50.29 63.32 59.50 70.76 

57.68 64.02 60.93 71.34 

63.43 71.05 64.49 73.92 
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Table 5 

Comparisons of top-1 validation accuracy (%) with standard knowledge distillation. The best ones are bolded, and the second-best ones are 

underlined. T and S denote teacher and student models, respectively. 

Methods CIFAR-10 Imagewoof CIFAR-100 CUB-200 Stanford Dogs Tiny ImageNet ImageNet Dogs 

T: ResNet-18 92.43 84.43 74.52 50.29 63.32 59.50 70.76 

S: MobileNetV2 87.74 81.99 69.06 52.71 60.52 52.77 52.81 

Standard KD 88.20 82.76 71.44 58.03 64.73 56.60 64.20 

FocusNet (Ours) 90.45 83.56 74.49 64.27 66.71 58.96 65.78 

Table 6 

Model complexity comparisons with self-knowledge distillation methods. The network architecture is ResNet-18. 

Methods Baseline DDGSD CS-KD SLA-SD Tf-KD ONE BYOT FRSKD FocusNet (Ours) 

Params (M) 11.27 11.27 11.27 11.58 11.27 11.27 12.49 17.75 11.27 

FLOPs (G) 4.46 4.46 4.46 4.46 4.46 4.46 4.68 7.62 4.46 

Table 7 

Comparisons of top-1 validation accuracy (%) with seven self-distillation methods. The best ones are bolded, and the second-best ones are 

underlined. The network architecture is ResNet-18. 

Methods CIFAR-100 CUB-200 Stanford Dogs Tiny ImageNet ImageNet Dogs 

Baseline [1] 74.52 50.29 63.32 59.50 70.76 

Tf-KD [7] 76.86 57.23 66.55 60.02 71.64 

ONE [35] 76.67 54.71 65.39 62.33 72.56 

DDGSD [32] 76.61 58.49 69.00 61.59 71.98 

BYOT [17] 76.68 58.66 68.82 63.10 72.90 

CS-KD [33] 77.19 64.34 68.91 60.44 72.76 

SLA-SD [34] 77.52 56.17 67.30 60.81 72.78 

FRSKD \ F [18] 77.64 62.29 69.48 63.84 73.53 

FRSKD [18] 77.71 65.39 70.77 64.35 74.31 

FocusNet (Ours) 78.29 63.43 71.05 64.49 73.92 

OurLoss + FRSKD 78.45 67.19 71.49 64.92 74.69 
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Table 8 

Comparisons of validation accuracy (%) with FRSKD on ImageNet. The best ones are 

bolded, and the second-best ones are underlined. 

Model Methods Top-1 Top-5 

ResNet-18 

Baseline 69.76 89.08 

FRSKD 70.17 89.78 

FocusNet (Ours) 70.42 89.56 

ResNet-34 

Baseline 73.31 91.42 

FRSKD 73.75 92.11 

FocusNet (Ours) 74.35 91.89 
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ResNet-18 → ResNet-18”, and “a poorly-trained MobileNetV2 

 ResNet-18”, corresponding to standard, self and defective- 

everse knowledge distillation, respectively. In addition, we also 

se “ResNet-34 → ResNet-34” for experiments on ImageNet 

o compare with the state-of-the-art self-knowledge distillation 

ethod. 

We use ResNet-18 to guide MobileNetV2. Table 5 compares the 

roposed FocusNet and standard knowledge distillation. Because 

e only evaluate the student model, comparisons among Mo- 

ileNetV2, standard knowledge distillation and FocusNet are fair. 

op-1 validation accuracy demonstrates that FocusNet is superior 

o standard knowledge distillation, especially on the fine-grained 

atasets, CUB-200, for example. 

We adopt ResNet-18 to guide ResNet-18, and compare the pro- 

osed FocusNet with seven representative self-knowledge distilla- 

ion methods including three data-augmentation-based methods 

DDGSD [32] , CS-KD [33] , SLA-SD [34] ) and four methods using 

uxiliary networks (Tf-KD [7] , ONE [35] , BYOT [17] , FRSKD [18] ).

able 6 compares the model complexity between FocusNet and 

hese self-distillation methods. 

Table 7 compares the classification performance of FocusNet 

ith self-knowledge distillation methods. Results show that our 

ocusNet outperforms state-of-the-art self-knowledge distillation 

ethods on the CIFAR-100, Stanford Dogs, and Tiny ImageNet 

atasets. In addition, we notice that FRSKD [18] uses an efficient 

earning paradigm that simultaneously trains the classifier network 

nd an auxiliary self-teacher network, and passes feature maps to 

ach other. We adopt this paradigm and replace its distillation loss 

unction with our proposed focus-picking loss function, called Our- 

oss+FRSKD. The results show that OurLoss+FRSKD achieves the 

est performances on all datasets, validating the advantage of our 

ocus-picking loss function. 

Table 8 compares our FocusNet with FRSKD on the ImageNet 

ataset. Results show that our FocusNet outperforms the state-of- 

he-art method in the top-1 accuracy. 
7 
We use the poorly-trained MobileNetV2 to guide ResNet-18 and 

ompare the proposed FocusNet with the defective-reverse knowl- 

dge distillation. The poorly-trained MobileNetV2 means that we 

nly train it a few epochs and do not decay the learning rate dur- 

ng training. Specifically, we train 1 epoch for CIFAR-10, 30 epochs 

or Imagewoof, 5 epochs for CIFAR-100, 50 epochs for CUB-200 

nd Stanford Dogs, and 10 epochs for Tiny ImageNet and ImageNet 

ogs. Table 9 shows that knowledge distillation is not suitable for 

his kind of network combination. However, FocusNet significantly 

mproves the baseline ResNet-18. The differences in performance 

re mainly due to the difference in design motivations. As de- 

cribed in Section 3.6 , the knowledge distillation aims to train an 

asy-deployed student model to match the teacher’s performance. 

owever, FocusNet aims to focus on confusing classes. The cred- 

bility of confusing classes mainly depends on the top- k accuracy 

nstead of the top-1 accuracy, so the poorly-trained MobileNetV2 

as less influence on our FocusNet than on the knowledge distilla- 

ion. 

.4. Impacts of the inaccurate baseline network on FocusNet 

We investigate the impact of confusing classes credibility on Fo- 

usNet by using a poorly-trained baseline network to guide Focus- 
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Table 9 

Comparisons of top-1 validation accuracy (%) with defective-reverse knowledge distillation. The best ones are bolded, and the 

second-best ones are underlined. Pt-MobileNetV2 and ResNet-18 are the poorly-trained teacher and student models, respec- 

tively. 

Methods CIFAR-10 Imagewoof CIFAR-100 CUB-200 Stanford Dogs Tiny ImageNet ImageNet Dogs 

T: Pt-MobileNetV2 46.93 41.33 35.65 35.43 37.98 32.14 33.29 

S: ResNet-18 92.43 84.43 74.52 50.29 63.32 59.50 70.76 

De-reverse KD 55.50 51.69 46.22 42.89 45.50 38.45 39.39 

FocusNet (Ours) 93.78 86.13 77.11 62.34 66.88 62.65 72.10 

Table 10 

Ablation study results. The results are top-1 validation accuracy (%). The network architecture is ResNet-18. The best performing 

strategies are in bold. 

Methods Cross-entropy L cls R attention R entropy CUB-200 Stanford Dogs 

Baseline � 50.29 63.32 

Ablations 

� 56.82 64.07 

� � 61.10 68.76 

� � 61.27 67.21 

FocusNet (Ours) � � � 63.43 71.05 

Fig. 4. The impact of inaccurate baseline branch on FocusNet. The poorly-trained baseline network denotes that we stop training at epochs 1, 10, 20, 30, 40, 50 and 60. The 

blue dash line and solid red line both indicate accuracy at epoch 200. The network architecture is ResNet-18. The benchmark datasets are CUB-200 and Stanford Dogs in (a) 

and (b), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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et. In the following experiments, we select ResNet-18 as the ar- 

hitecture of both the baseline and FocusNet. The poorly-trained 

aseline ResNet-18 means that we only train it a few epochs and 

o not decay the learning rate during training. FocusNet denotes 

e train ResNet-18 with our focus-picking loss function. Fig. 4 

hows the impact of the inaccurate baseline network branch on Fo- 

usNet. The performance of FocusNet generally improves as the ac- 

uracy of the baseline network increases. Furthermore, even with 

 highly inaccurate pre-trained network (1.29% for CUB-200 and 

.22% for Stanford Dogs), FocusNet still outperforms the baseline 

blue dashed line). We attribute this phenomenon to FocusNet, 

hich emphasizes the contribution of difficult samples on the one 

and, and focuses on the most confusing classes on the other. The 

redibility of confusing classes mainly depends on the top- k accu- 

acy rather than the top-1 accuracy. 

.5. Ablation study 

In this section, we investigate the necessity of each term of 

ur proposed focus-picking loss function. Table 10 shows the top- 

 validation accuracy of ResNet-18 on the CUB-200 and Stanford 

ogs datasets using different loss function combinations. L cls im- 

roves the baseline by emphasizing the importance of difficult 

amples. R attention and R entropy both contribute to better perfor- 

ances by encouraging FocusNet to focus on confusing classes and 

revent over-fitting. Our FocusNet outperforms the baseline by a 
8 
arge margin, demonstrating the importance of each term of our 

ocus-picking loss function. 

. Conclusions 

In this work, we observe that a classification network trained 

ith one-hot labels can pay attention to the target image region 

ven if it makes an incorrect prediction. To enable the network 

o better discriminate between confusing classes, we propose a 

onfusion-focusing mechanism and a focus-picking loss function 

y considering confusing inter-class interactions. The confusion- 

ocusing mechanism is implemented in a two-branch network ar- 

hitecture, i.e. a baseline branch and a FocusNet branch. The Focus- 

et branch does not restrict to specific network architectures and 

an adopt common models. Its main advantage is that it improves 

he performance of networks without increasing model complex- 

ty. Fine-grained classification and computational resource-limited 

cenes can benefit from our method because our method encour- 

ges networks to focus on the most confusing classes and does not 

mpose additional deployment burdens at test time. In addition, we 

ave demonstrated that FocusNet can still improve performance 

ven with a highly-inaccurate pre-trained network. Experimental 

esults have validated that our FocusNet performs well on a num- 

er of challenging datasets, and that the focus-picking loss function 

an further improve the state-of-the-art techniques. 

A limitation of our current confusion-focusing mechanism is its 

neffective two-stage training strategy. In the future we will work 
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owards an optimized one-stage scheme that can further improve 

raining efficiency and classification accuracy. 
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