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Chromaticity-based separation of reflection components in a single image
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Abstract

The separation of diffuse and specular reflection components, or equivalently specularity removal, is required in the fields of computer vision,
object recognition and image synthesis. This paper proposes a simple and effective method to separate reflections in a color image based on the
error analysis of chromaticity and appropriate selection of body color for each pixel. By solving the least-squares problem of the dichromatic
reflection model, reflection separation is implemented on a single pixel level, without requiring image segmentation and even local interactions
between neighboring pixels. Experimental evaluation indicates that the proposed method is effective and can deal with a wide variety of images.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

For a wide variety of inhomogeneous materials, including
plastic, wood, ceramic and other opaque nonconductors with
uniform pigmentation, the reflection is the combination of
diffuse reflection and specular reflection, which can be well
described by the dichromatic reflection model introduced by
Shafer [1]. The role of specular reflection is very important in
the fields including computer vision [2,3], object recognition
[4,5] and image content editing [6,7]. As many algorithms in
computer vision and object recognition assume that the scene
contains only diffuse reflection, they will become erroneous
in the existence of specular reflection. As the specular reflec-
tion is relevant to the roughness of object surface, it should
be first recovered and then incorporated in the simulation of
new object appearances. With these regards, it is often desired
to separate the diffuse and specular reflection components
accurately from one or more images [8–12].

1.1. Previous work

Many methods for separating reflection components have
been proposed in the literature. Nayar et al. [8] used a
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polarization filter to identify the highlights based on the fact
that, for dielectric materials, the specular component is polar-
ized while the diffuse component is not. The work of Tan et
al. [9] was the first one that proposed the concept of specular-
free (SF) image, which contains the identical geometry of the
original image while eliminates the specular reflection com-
ponents. Through the intensity logarithmic differentiation on
both of the original and SF images, the pixels containing only
diffuse reflections can be successfully localized. The spec-
ular components of highlight pixels are then removed in a
two-pixel neighborhood region by employing an iterative
framework. Tan et al. [10] also proposed another method for
separating reflection components of uniformly colored sur-
faces based on the analysis of chromaticity and noise in the
maximum chromaticity–intensity space.

Park and Lee [11] proposed a highlight inpainting method
based on color line projection, by employing two images
captured under different exposure times. Mallick et al. [12]
proposed a unified framework to separate two reflection com-
ponents from images and videos by using a partial differential
equation approach. Their work also showed that different ob-
ject surface appearances could be simulated by editing and
recombining these two reflection components. Tan et al. [13]
introduced an image inpainting technique for highlight removal
without losing surface textures, by using the partially available
information of diffuse reflections in the highlight areas.
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1.2. Contributions of our method

It is noted that most of the previous works deal with the sep-
aration of reflection components by color projection or color
shift in RGB space or a specified color space [9,11,13]. When
the objects are not uniformly colored, preprocessing procedures
such as image segmentation are needed before applying the
method proposed in Ref. [10]. When there are multicolored ob-
jects or textures in the scenes, the local interactions between
pixels must be considered in many methods [9,12,13], which
makes the algorithm complicated to implement. Although the
method introduced by Nayar et al. [8] can obtain accurate re-
sults, using an additional polarization filter seems impractical
in many imaging circumstances.

In this study, we propose a simple and effective method to
separate the diffuse and specular reflection components by the
direct use of dichromatic reflection model [1]. It is known that
the diffuse reflection represents the intrinsic properties of the
object surfaces, while the color of the specular reflection is
always the same to that of the illuminant [14]. Hereafter, the
RGB vector (camera response) of the intrinsic material spectral
reflectance is referred as body color, and the RGB vector of the
spectral power distribution of the imaging illuminant is termed
as illuminant color. The illuminant color can be simply acquired
by imaging a white object surface. If this is not applicable,
the illuminant color can be estimated using color constancy
algorithms [15]. It is obvious that if the body color is known, the
proportions of the diffuse and specular reflection components
can be easily computed by solving the dichromatic equation
under the least-squares criterion [6]. As image segmentation and
other image operations are usually inappropriate to complex
scenes, the proposed method estimates the body color for each
pixel based on chromaticity analysis.

In the proposed method, a new SF image and a modified
SF (MSF) image are introduced. The SF image is obtained by
subtracting the minimum RGB value at each pixel position,
and the MSF image is formed by adding a same scalar value
for each pixel on the SF image. The noise analysis indicates
that the MSF image is more robust than the SF image, and
therefore the former is used to compute the chromaticity for
each pixel. The approximate diffuse and specular candidates
are decided according to the difference between the MSF and
original images. Then, by iterative selection of body colors and
calculation of chromaticity differences, the diffuse and specular
reflection components are appropriately separated by the least-
squares technique.

The rest of this paper is organized as follows. Section 2
presents the concept of the SF and MSF images, and their
robustness of chromaticity with respect to imaging noise is
analyzed statistically. Section 3 outlines the procedure for sep-
arating diffuse and specular reflections in a color image. Ex-
perimental results and discussion are provided in Section 4.
Section 5 is the conclusion of this paper.

2. Specular-free images and chromaticity analysis

According to the dichromatic reflection model, the color
V(p) of a pixel p is the linear combination of diffuse reflection

component with body color Vb and specular reflection compo-
nent with surface color Vs:

V(p) = �(p)Vb + �(p)Vs (1)

where �(p) and �(p) are the coefficients (or proportions) of the
diffuse and specular reflection components, respectively. The
illuminant color can be obtained by imaging a white object
surface or estimated using color constancy algorithms. Then
the color of each pixel is first normalized with respect to the
illuminant color and then rescaled to the range 0.255 [10]. By
this operation the surface color becomes pure white, or more
precisely, Vs=[255, 255, 255]T, with the superscript T denoting
vector transpose. It is obvious from Eq. (1) that, as the colors
contain three components, i.e., red, green and blue, the two
coefficients �(p) and �(p) can be computed using least-squares,
provided that the body color Vb is available. The following
subsections illustrate how the body color Vb of each pixel can
be decided by the chromaticity analysis of the MSF image.

2.1. SF and MSF images

The concept of SF image was first introduced by Tan et al.
[9]. In their work, the SF image is obtained by setting the diffuse
maximum chromaticity equal to a scalar value for all pixels,
and computing the estimated specular components from the
original colors. The geometry information of their SF image is
the same to that of the original image, but the color information
may be quite different [9]. Fig. 1(d) shows the SF image of
a fish image using their method when the diffuse maximum
chromaticity is set to 0.5.

As the most important purpose of SF image is to eliminate
the specular reflection components, it can actually be produced
in a very simple manner, i.e., by subtracting the minimum of
the RGB components of the color V(p):

Vsf,i (p) = Vi(p) − min(V1(p), V2(p), V3(p))

= Vi(p) − Vmin(p) (2)

where Vi(p) is the ith element of color V(p), and Vsf,i (p) is
the ith element of the SF color Vsf(p), and

Vmin(p) = min(V1(p), V2(p), V3(p))

= �(p) min(Vb,1, Vb,2, Vb,3) + �(p)Vs

= �(p)Vb,min + �(p)Vs (3)

where Vb,i is the ith element of body color Vb, Vb,min =
mini (Vb,i ) and Vs is the component of color Vs. Note that the
subscript i of Vs is omitted as the surface color Vs is pure
white after the normalization with respect to illuminant color.
By combining Eqs. (2) and (3), the SF color can be rewritten as

Vsf,i (p) = �(p)(Vb,i − Vb,min) (4)

It is clear from Eq. (4) that the specular component is eliminated
while the geometry information is reserved in the SF image.

It can be observed from Eq. (4) that, as Vb,min = mini (Vb,i ),
at least one element of the vector Vsf(p) is 0, and hence the
color appearance of the SF image is always darker than that of
the original image.
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Fig. 1. (a) Original fish image, (b) SF image of the proposed method, (c) MSF image, (d) SF image by Tan’s method.

As will be seen, the chromaticity of the SF image is unstable
when the other two elements of Vsf(p) are also small. With
these regards, we propose to calculate an MSF image by adding
a scalar value on SF color:

Vmsf,i (p) = Vsf,i (p) + V min (5)

where Vmsf,i (p) is the ith element of the MSF color vector
Vmsf(p), and V min is the mean of Vmin(p) for all the pixels in
the image:

V min =
∑

pVmin(p)

#pixels
(6)

Fig. 1 shows that, compared with the SF image, the color ap-
pearance of the MSF image is closer to that of the original
image.

2.2. Error analysis of chromaticity

The chromaticity of the SF and MSF images can be computed
according to Eqs. (7) and (8), respectively:

csf,i (p) = Vsf,i (p)∑
iVsf,i (p)

= Vb,i − Vb,min∑
i (Vb,i − Vb,min)

(7)

cmsf,i (p) = Vmsf,i (p)∑
iVmsf,i (p)

= Vsf,i (p) + V min∑
iVsf,i (p) + 3V min

= �(p)(Vb,i − Vb,min) + V min

�(p)
∑

i (Vb,i − Vb,min) + 3V min
(8)

The chromaticity csf,i (p) of the SF image is invariant to
shape geometry, but will be unstable for the dark or neutral
color when the denominator Vb,i − Vb,min is small. The chro-
maticity cmsf,i (p) depends upon �(p), and it still contains
partial geometry information of the object surface. Due to the
additional term 3V min in the denominator, cmsf,i (p) should be
more robust to noise influence than csf,i (p) when the term∑

i (Vb,i − Vb,min) is close to zero. When V min is significantly
smaller than (Vb,i − Vb,min), cmsf,i (p) will be very close to
csf,i (p). The chromaticity of the SF and MSF images are shown
in Fig. 2. It is found that the chromaticities of different regions
of the MSF image are not as distinct as those of the SF image.
As expected, they are insensitive to noise.

As the robustness of chromaticity is fundamental to our pro-
posed method, it is worthwhile to investigate the influence of
noise more deeply. Let the measurement of a random quantity
u be given as

û = u + �u (9)

where u is the mean of the measurements that best estimates
the ideal quantity u, and �u is the uncertainty of the mea-
surements. �u can be represented by the standard deviation of
the measurements. Suppose the quantities u, . . . , w are mea-
sured with uncertainty �u, . . . , �w and a function f (u, . . . , w)

is computed from these quantities, then the uncertainty of the
function f (u, . . . , w) can be computed as [16]:

�f =
[(

�f

�u
�u

)2

+ · · · +
(

�f

�w
�w

)2
]1/2

(10)
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Fig. 2. Chromaticity of the SF image (a) and MSF image (b).

Suppose the uncertainty of Vsf,i (p) is �sf,i (p), the uncertainty
of chromaticity csf,1(p) can be computed by substituting
Eq. (7) into Eq. (10):

�csf,1(p)

= [(Vsf,2(p) + Vsf,3(p))2�2
sf,1(p) + V 2

sf,1(p)(�2
sf,2(p) + �2

sf,3(p))]1/2

(Vsf,1(p) + Vsf,2(p) + Vsf,3(p))2 .

(11)

The uncertainties �csf,2(p) and �csf,3(p) can be computed in
a similar way. Eq. (11) indicates that when Vsf,i (p) is close
to zero, the uncertainty of the chromaticity csf,i (p) will be
magnified.

If the uncertainty of Vmsf,i (p) is also �sf,i (p), the uncertainty
of cmsf,1(p) is computed as

�cmsf,1(p)

= [(Vmsf,2(p) + Vmsf,3(p))2�2
sf,1(p) + V 2

msf,1(p)(�2
sf,2(p) + �2

sf,3(p))]1/2

(Vmsf,1(p) + Vmsf,2(p) + Vmsf,3(p))2

= [(Vsf,2(p) + Vsf,3(p) + 2V min)
2�2

sf,1(p) + (Vsf,1(p) + V min)
2(�2

sf,2(p) + �2
sf,3(p))]1/2

(Vsf,1(p) + Vsf,2(p) + Vsf,3(p) + 3V min)
2 . (12)

The uncertainties �cmsf,2(p) and �cmsf,3(p) can also be computed
in a similar way. As there is a term V min in the denominator in
Eq. (12), the uncertainty of the chromaticity cmsf,i (p) is always
not large.

It is of interest to investigate the magnitude of noise influ-
ence on chromaticity calculation by data simulation. For sim-
plicity, we only consider the dark current noise of the camera
and suppose it is intensity independent and normally distributed
with zero mean. Suppose Vsf,1(p) = 10 + n(0, �), Vsf,2(p) =
10 + n(0, �), Vsf,3(p) = 20 + n(0, �) and V min = 20, where
n(0, �) denotes the additional Gaussian noise with variance
�= 3. Figs. 3(a) and (b) show the distributions of chromaticity
csf,i (p) and cmsf,i (p) with respect to different geometry co-
efficient �(p). The red curves in Fig. 3 are the chromaticity
distributions without consideration of noise. The standard devi-
ation of the chromaticity error of csf,i (p) and cmsf,i (p) is 0.025
and 0.007, respectively, which means that the uncertainty of
�csf,i (p) is 3.6 times larger than that of �cmsf,i (p). With this re-
gard, the chromaticity cmsf,i (p) is used in the proposed method
for reflection separation, as discussed in the following.

3. Separation of reflection components

In order to decide the body color Vb for each pixel, we first
classify all pixels in the image into two sets. The first set is a

collection of candidates with sole diffuse reflection, while
the second set is a collection of candidates with combined
reflections (diffuse and specular reflections). The candidate
classification is implemented on the single pixel level, based
on the difference between the MSF and original images:

candidate =
{

diffuse if Vi(p) − Vmsf,i (p) < th1 for all i

combined otherwise
(13)

It is usually impossible to classify all the pixels in an image
into two reflection sets exactly by using only a single threshold
th1. Fortunately, as the purpose is to decide the body color,
an approximate candidate classification will be adequate. The
criterion of th1 selection is that the pixels satisfying Vi(p) −
Vmsf,i (p) < th1 must contain sole diffuse reflection, while those
satisfying Vi(p)−Vmsf,i (p)� th1 can contain either sole diffuse
reflection or combined reflections. Our investigation indicates
that th1 =V min is suitable to all images (more than 25) used in
this study. Fig. 4 shows the diffuse and combined candidates
of the fish image.

The reflection separation is implemented in an iterative man-
ner. In each iteration, an appropriate diffuse candidate is treated
as the body color Vb, and then the coefficients �(p) and �(p)

of the pixels with chromaticity close to that candidate are
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computed. As there is always noise in an image, two concerns
are specially considered: (1) the body color is always the dif-
fuse candidate with the largest intensity, and (2) the reflection
separation is applied on both diffuse and combined candidates
such that the separated diffuse components Vdf is error-free
while the specular components Vsp may contains imaging noise.
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Fig. 3. Distribution of chromaticity with respect to different � values when
influenced by noise: (a) chromaticity of the SF image; (b) chromaticity of
the MSF image.

Fig. 4. (a) Diffuse candidates and (b) combined candidates.

Refer to Eqs. (17), (18), (22), (23) for details. The procedure
of reflection separation is as follows:

• Step 1: Iterate while there are any unprocessed diffuse can-
didates
Find the pixel p with the largest Vmax(p) (=maxiVi(p))

among those unprocessed diffuse candidates, and set the color
of p as body color Vb(p).
For each unprocessed pixel q (can be either diffuse or com-
bined candidate) satisfying∑

i

|cmsf,i (q) − cmsf,i (p)|� th2 (14)

where th2 is a chromaticity threshold, compute its reflection
coefficients under the least-squares criterion:[

�(q)

�(q)

]
= [Vb(p) Vs]−V(q) (15)

where the superscript “−” denotes pseudo-inverse. If
�(q) < 0, recompute �(q) as

�(q) = Vb(p)−V(q) (16)

Eq. (16) is built on the fact that specular reflection is gener-
ally nonnegative. After obtaining the diffuse coefficient �(q)

original image

MSF image

chromaticity

separating reflection components for all diffuse
candidates and some combined candidates

classifying diffuse and specular candidates

separating reflection components for the remaining
combined candidates

Fig. 5. Flowchart of the proposed method.



2466 H.-L. Shen et al. / Pattern Recognition 41 (2008) 2461–2469

Fig. 6. (a) and (b) The diffuse and specular components by the proposed method, respectively. (c) and (d) The diffuse and specular components by Tan’s
method, respectively.

according to Eq. (15) or (16), we compute the diffuse reflec-
tion component Vdf(q) and specular reflection component
Vsp(q):

Vdf(q) = �(q)Vb(p) (17)

Vsp(q) = V(q) − �(q)Vb(p) (18)

and finally the pixel q is labeled as processed. It is noted
that Vdf(q) is error-free, while Vsp(q) may incorporate the
influence of noise.

• Step 2: Iterate while there are any unprocessed combined
candidates
Take an unprocessed combined candidate r in the sequential
manner, and find the already processed pixel p∗ whose chro-
maticity is closest to that of pixel r

p∗ = argmin
p

|cmsf(p) − cmsf(r)| (19)

For each unprocessed pixel q (combined candidate) satisfying∑
i

|cmsf,i (q) − cmsf,i (p
∗)|� th2 (20)

compute its reflection coefficients according to[
�(q)

�(q)

]
= [Vdf(p

∗) Vs]−V(q) (21)

Note that Vdf(p
∗) is used instead of V(p∗) in Eq. (21). Then,

the diffuse and specular reflection components become

Vdf(q) = �(q)Vdf(p
∗) (22)

Vsp(q) = V(q) − �(q)Vdf(p
∗) (23)

and finally the pixel q is labeled as processed.

It can be noticed that, in step 1, all diffuse candidates and
some combined candidates are processed, while in step 2, the
remaining combined candidates are processed. It is noted that
the pixel p∗ in Eq. (19) need not be the one with maximum
intensity, as its diffuse reflection component Vdf(p

∗) is error-
free after the processing in step 1. The chromaticity threshold
th2 = 0.05 is suitable in this study.

4. Experiment results

For the purpose of easy understanding, the flowchart of the
proposed method is illustrated in Fig. 5. The MSF image is
computed by subtracting the minimum intensity and adding a
scalar value so that its chromaticity becomes stable. All pixels
are classified into diffuse and combined candidates by thresh-
olding the difference between the MSF image and the original
image. The separation of reflection components is implemented
in an iterative manner, by selecting appropriate body color and
computing chromaticity difference for each pixel. In the first
stage, the reflection separation is applied on all diffuse candi-
dates and some combined candidates, and in the second stage,
it is applied on the remaining combined candidates.

The proposed method is completed and evaluated under the
environment of Microsoft Windows XP� and Visual C + +
6.0, on a PC with Intel� CoreTM 2 CPU and 2 GHz memory.
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Fig. 7. (a) Original boy image. (b) and (c) The diffuse and specular components by the proposed method, respectively. (d) and (e) The diffuse and specular
components by Tan’s method, respectively.

Fig. 8. (a) Original bear image, (b) diffuse component, (c) specular component.

More than 25 images were used to evaluate the effectiveness of
the proposed method. For typical images with about 380 ×360
pixels, the average running time of the proposed method is
around 0.6 s, while that of Tan’s method [10] is about 20 s.
The original fish image in Fig. 6 contains textures and many
regions. The separated reflection components of the fish image
are similar to those obtained by Tan’s method. Fig. 7 shows
the experimental results of a uniformly colored boy image.

Again, the performance of the proposed method is close to Tan’s
method. Fig. 8 shows the separation results of a textile bear
with a horn. The highlights on the two different materials, i.e.
textile and plastic, are successfully detected and appropriately
separated. Fig. 9 indicated that the proposed method can also be
applied on human face. The original image in Fig. 10 contains
many highlights in different positions of the three toys, which
are also handled by the proposed method successfully.
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Fig. 9. (a) Original lady image, (b) diffuse component, (c) specular component.

Fig. 10. (a) Original toys image, (b) diffuse component, (c) specular component.

5. Conclusions

We have proposed a method for the separation of diffuse and
specular reflection components in a color image. The advan-
tages and contributions of the proposed method are that (1) it
does not require image segmentation and even local interaction
of neighboring pixels, and (2) the reflection component sepa-
ration is very easily implemented by solving the dichromatic
equation using the least-squares technique. The experimental
results showed that the performance of the proposed method is
promising and can deal with various kinds of images.
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