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A B S T R A C T

A filter-wheel multispectral imaging system can be used to acquire the spectral reflectance of a sample. In
the imaging system, large displacements between band images are obtained and corrected by employing a
specific chart as a system calibration process. However, small misalignment can still occur due to the possible
mechanical vibration when measuring individual samples. These small misalignments always cause chromatic
aberration and corrupt spectral accuracy in the acquired multispectral image. To deal with this problem, this
paper proposes a block-based multispectral image registration method that is accurate and efficient for practical
color measurement. In our method, each band image is evenly divided into blocks. The local translations
between individual block pairs, which are selected according to a gradient strength map, are computed based
on an image similarity measure. The misalignment between reference and floating band images is modeled as
a global affine transform, which can be efficiently solved using regularized least squares. Experimental results
validate the accuracy and computational efficiency of our method on both synthetic and real images. It is also
demonstrated that the accuracy of single-yarn spectral color measurement can be considerably improved by
employing our multispectral image registration method.

1. Introduction

Multispectral color imaging has been widely used in color measure-
ment [1], remote sensing [2], and biomedicine [3] fields. Compared
with conventional RGB cameras, a multispectral imaging system ac-
quires band images at multiple wavelengths so that more spectral
information can be obtained. Based on faithful spectrum reconstruction,
accurate color reproduction as well as high-fidelity color images can be
guaranteed, which is essential for spectral color measurement [4].

A multispectral imaging system splits the visible spectrum reflected
from the imaged object into more than three bands, and records these
bands as a series of monochrome images. Various filters can be used
to split the spectrum, such as bandpass optical filters [5], the liquid
crystal tunable filter (LCTF) [6], and the acousto-optic tunable filter
(AOTF) [7]. The imaging system acquires spectral band images sequen-
tially by exchanging filters. Recently, snapshot multispectral imaging
systems [8–10] have been developed to capture images at different
wavelengths simultaneously.

In this work, we use a filter-wheel multispectral imaging system as
shown in Fig. 1. The system consists of a monochrome camera, a lens
with 50 mm fixed focal length, and a filter wheel installed with 16
narrowband filters. The full width at half maximum (FWHM) value of
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each filter is 10 nm, and the central wavelengths are at 400, 420, … ,
and 700 nm. A multispectral image is acquired by rotating the bandpass
filters into the optical path and capturing band images sequentially.
The spectral reflectance for each pixel in the multispectral image can
be reconstructed using Wiener estimation [4].

The filter-wheel imaging system acquires band images with high
quality. However, as the effective focal lengths vary at different bands,
out-of-focus blur will appear in band images. In addition, due to the
non-coplanar placement and different refractive indices of the filters,
band images can be misaligned. These two problems preclude the
direct combination of band images for further applications. We note
that the out-of-focus blur problem can be resolved by computing the
optimal focus position for each band and moving the lens using a step
motor [11]. Recently, an out-of-focus deblurring algorithm [12] has
also been introduced for multispectral images. Hence in this work we
focus on the problem of inter-band image misalignment.

In the literature, optical design and post-processing approaches have
been introduced to compensate chromatic aberration. An overview
of color correction strategies in optical design is presented in [13].
Chromatic aberration in optical systems with five spectral bands is
reduced by using a glass selection method [14]. The aberration in
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Fig. 1. The schematic diagrams of the multispectral imaging system (a) and the filter
wheel (b). Note that the filter wheel employed in this work actually has 16 filters but
only 8 ones are drawing for illustration purpose.

Fig. 2. Chromatic aberration caused by band image misalignment. (a) Original well-
aligned multispectral image, (b) Multispectral image by imposing a 3-pixel translation
at band 500 nm. The multispectral images are displayed in RGB for illustration purpose.

AOTF can also be corrected with a designed prism [15] or transduc-
ers [16]. Post-processing approaches usually aim to find the transform
between different bands. A mathematical model of the distortions of
band images is derived in [17] and the transform parameters are
estimated through image registration. By adopting a particular cali-
bration chart, geometric calibration can be conducted to compensate
misalignment [18,19].

In our filter-wheel multispectral imaging system, we correct geo-
metric distortion caused by lens and filters in the systematic calibration
procedure. However, we notice that small inter-band misalignment still
occurs when measuring samples. This is due to the unavoidable me-
chanical disturbance during the measurement process, including filter-
wheel rotation, lens auto-focus adjustment, slight sample movement,
and vibration of surrounding environment. As the induced misalign-
ment is time-variant and not systematic, band image registration should
be conducted at the time of acquiring images for individual samples.
Actually, this problem also occurs in other sequential imaging systems.
For example, the AOTF-based multispectral imaging system suffers
from the inter-band misalignment induced by platform jitter [20]. The
registration of multispectral images is needed for endoscopes due to the
movement of the tissue and camera during acquisition [21].

For high-fidelity appearance reproduction and accurate spectral
color measurement, the elimination of the induced misalignment is an
urgent need. We illustrate this by a simulation. The original multispec-
tral image (displayed in RGB format) in Fig. 2(a) is well aligned. By
inducing a 3-pixel translation, the resultant image in Fig. 2(b) exhibits
obvious chromatic aberration.

In this paper, we propose a block-based multispectral image regis-
tration method to eliminate the inter-band misalignment. First, each
band image is evenly divided into blocks. The blocks with relatively
large gradient strength values are selected, and the local translations

between block pairs are computed using an image similarity measure.
Then, a global affine transform model is adopted to efficiently esti-
mate the misalignment between reference and floating band images.
In the experiments, the proposed registration method is evaluated on
both synthetic and real images, and its application to spectral color
measurement is demonstrated.

2. Prior art

Image registration aims to find the transform between two im-
ages and to make them aligned with each other. Image registration
can be categorized into feature-based and intensity-based methods.
Feature-based methods usually include the feature detection, extrac-
tion, matching, and image transform steps. Among these methods, the
most popular is scale invariant feature transform (SIFT) [22]. Feature-
based methods are relatively efficient but have limited accuracy, and
may fail in multispectral image registration due to luminance change
and contrast reversal.

In intensity-based methods, an intensity similarity measure is first
defined, and then the correspondence is computed by maximizing
a similarity measure between two images. The common similarity
measures include sum-of-squared differences (SSD), correlation coef-
ficient (CC), mutual information (MI) and their variations. However,
these measures are sensitive to local intensity variation which is com-
mon in multispectral images. In [23], the robust selective normalized
cross correlation (RSNCC) is proposed for the dense matching of both
multispectral and natural images. Recently, the normalized total gra-
dient (NTG) [24], which is based on the sparse characteristics of
image gradients, has been introduced for robust multispectral image
registration.

After choosing the similarity measure, image registration is cast as
an optimization problem of finding optimal transform. As the objective
function may be non-convex, the local optimization algorithms such as
gradient descent and Levenberg–Marquardt (LM) algorithm [25] may
fail to find the optimal transform. The global optimization algorithms
such as simulated annealing [26] and evolutionary algorithm [27], on
the other hand, suffer from slow convergence rates. As global opti-
mization algorithms are computationally expensive, they are usually
unqualified for time critical applications.

Block matching, as an alternative strategy, has been employed in
many image registration procedures [17,28,29]. Inspired by this strat-
egy, here we propose a block-based registration method to eliminate
small misalignments between spectral band images effectively and
efficiently. Our method computes image similarity on selected small-
size block pairs instead of the whole image and can produce subpixel
accuracy. Based on the estimated translations between block pairs,
multispectral image registration is solved in a closed form. Compared
with the traditional local and global optimization methods applied on
whole images, our method is computationally efficient and avoids the
risk of falling into local minimum.

3. Proposed multispectral image registration method

In a multispectral imaging system, the misalignments between band
images can be compensated using image registration. Unlike unimodal
images, in our application scenario, the image intensities at individ-
ual spectral bands can be much different. Besides, the local contrast
of two band images may be inconsistent or even reversed [24]. To
address these issues, we develop our block-based multispectral image
registration method.
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Fig. 3. Framework of our multispectral image registration method . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Image division and block selection of a band image. (a) Original band image, (b) gradient image, (c) The function of 𝐅(𝑥, 𝑦) w.r.t. 𝐒grad(𝑥, 𝑦) with different 𝛼 and 𝑘 values,
(d) gradient strength map 𝐅 when setting 𝛼 = 2 and 𝑘 = 4. The selected blocks are marked with green circles . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.1. Framework

Fig. 3 shows the framework of our method. We first compute
the gradient images of band images. Then we divide each band
image into blocks and select from them using a gradient strength
map. We compute similarity measure values between the displaced
blocks and the corresponding reference block. In the figure, color
maps are used to indicate the NTG values, where the bluest points
in the maps correspond to the matching positions. In this way, we
obtain the displacements of selected blocks. Finally, we model the

misalignment as a global affine transform and compute the transform
parameters.

3.2. Block partition and selection

Our method divides the image into uniformly distributed blocks. In
this work the pixel displacement between the reference and floating
blocks is limited. This narrows the searching range of optimal discrete
pixel displacement in block matching. Compared with the global reg-
istration method that searches optimal parameters in the continuous

48



H.-L. Shen, Z. Zou, Y. Zhu et al. Optics Communications 451 (2019) 46–54

Fig. 5. Multispectral images (displayed in RGB) used in the synthetic data experiments
for registration accuracy evaluation. The images are originally well aligned. Simulated
transforms are imposed on all bands except the reference one to generate misaligned
multispectral images.

parameter space, our block matching method can be computational
efficient.

Fig. 4(d) shows an image divided into 𝑀×𝑁 titled non-overlapping
blocks for illustration. For a given image, the number of blocks di-
rectly determines the block size. In our method, the block size should
be relatively small such that the image registration problem can be
simplified to computing the pixel translation from each block pair. On
the other hand, the block size should be relatively large such that the
corresponding blocks should have sufficient overlapping region. Our
investigation indicates that the registration accuracy of our method
is insensitive to the number of blocks. Hence we use the setting of
𝑀 = 𝑁 = 8 in the following presentation. The registration accuracy and
computational efficiency of varying numbers of blocks will be shown
in the experiments (Section 4.3).

The following block selection and block matching processes both
involve gradient images. For a floating image 𝐒, we compute its gradi-
ents 𝐒𝑥 and 𝐒𝑦 along the horizontal and vertical directions, respectively,
using convolution

𝐒𝑥 = 𝐡𝑥 ∗ 𝐒,
𝐒𝑦 = 𝐡𝑦 ∗ 𝐒,

(1)

where the kernels 𝐡𝑥 = (−0.5, 0, 0.5) and 𝐡𝑦 = (−0.5, 0, 0.5)𝖳. Let 𝐒grad
denote the absolute gradient map of 𝐒, the (𝑥, 𝑦)th entry in 𝐒grad is
computed as

𝐒grad(𝑥, 𝑦) = |𝐒𝑥(𝑥, 𝑦)| + |𝐒𝑦(𝑥, 𝑦)|. (2)

For illustration, a band image and its gradient map are shown in
Fig. 4(a) and (b), respectively.

We note that, to keep robustness, only the blocks with sufficient
structural information are selected for block matching. It is known
that the intensity distributions of two band images can be very differ-
ent [24]. More specifically, due to the characteristic of scene spectra,
the gradient map of one band image may be weak, while that of
another band image may be quite strong. This makes the direct use
of gradient map inappropriate in block selection. Hence, we compute a
gradient strength map 𝐅 from the gradient map 𝐒grad by strengthening
the structural information. This is achieved by normalizing 𝐒grad and
inducing a nonlinear logistic transform.

We compute the mean of gradient map as

𝜇 = 1
𝑁

∑

𝑥

∑

𝑦
𝐒grad(𝑥, 𝑦), (3)

where 𝑁 denotes the number of pixels. Considering the sparseness of
image gradients, 𝜇 is quite small in most cases. 𝐒grad can be centralized
and normalized using 𝜇, producing a normalized gradient map

�̃�grad(𝑥, 𝑦) =
𝐒grad(𝑥, 𝑦) − 𝛼𝜇

𝜇
, (4)

Fig. 6. Registration results of a multispectral image. (a) Original misaligned multispec-
tral image (displayed in RGB), (b) fusion of reference (560 nm) and floating (540 nm)
band images from multispectral image in (a), (c) multispectral image after registration,
(d) fusion of reference and floating band images from multispectral image in (c) . (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

where parameter 𝛼 > 0 controls the zero position of �̃�grad. By employing
the logistical function, the gradient strength map 𝐅 can be computed
as

𝐅(𝑥, 𝑦) = 1

1 + exp
(

−𝑘�̃�grad(𝑥, 𝑦)
) , (5)

where parameter 𝑘 > 0 controls the shape of 𝐅(𝑥, 𝑦). By substituting
Eq. (4) into Eq. (5), we have

𝐅(𝑥, 𝑦) = 1

1 + exp
(

−𝑘
𝐒grad(𝑥, 𝑦) − 𝛼𝜇

𝜇

)
. (6)

Fig. 4(c) illustrates the curves of function 𝐅(𝑥, 𝑦) with respect to
𝐒grad(𝑥, 𝑦) with different 𝛼 and 𝑘 values. With the logistic function, the
gradient values around the center 𝛼𝜇, which correspond to the majority
of structural information, are approximately scaled. The two ends,
which correspond to the quite small and large gradient magnitudes,
converge towards the saturation values of 0 and 1, respectively. In this
work, we set 𝛼 = 2 and 𝑘 = 4, which produces satisfactory structure
extraction results. Fig. 4(d) shows the gradient strength map 𝐅. It is
observed that the main structures in the band image are well kept while
other trivial structures are suppressed.

To improve registration robustness, only blocks with significant
structural information are used for local block matching. Let Ω𝑖 denote
the pixel domain of the 𝑖th block, its significance is computed as

𝛤𝑖 =
∑

𝑥

∑

𝑦
𝐅(𝑥, 𝑦), (7)

where (𝑥, 𝑦)𝖳 ∈ Ω𝑖. We sort all blocks with respect to the values of 𝛤𝑖
(1 ≤ 𝑖 ≤ 𝑀𝑁) in descending order, of which the first half are used in the
following block matching process. Fig. 4(d) shows the block selection
results for illustration.

3.3. Block matching using NTG

We find the displacement of a block pair through block matching.
The misalignment between band images is small, and hence the dis-
placement of a block pair lies in a limited range. In this regard, we
only estimate the translation, instead of the affine transform between
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the block pair. By shifting the floating image block in both horizontal
and vertical directions in the range of [−𝑑, 𝑑], the similarity measure
value is computed between the translated block 𝐒′ and corresponding
reference block 𝐓′. Considering the small misalignment between band
images, we set 𝑑 = 5, which is sufficient in our system.

Here NTG is employed as the similarity measure because of its
effectiveness and efficiency in multispectral image registration [24].
The NTG value between image blocks 𝐒′ and 𝐓′ is computed as

NTG(𝐒′,𝐓′)=

∑

𝑥
∑

𝑦

(

|𝐒′𝑥(𝑥,𝑦)−𝐓
′
𝑥(𝑥,𝑦)|+|𝐒

′
𝑦(𝑥,𝑦)−𝐓

′
𝑦(𝑥,𝑦)|

)

∑

𝑥
∑

𝑦

(

|𝐒′𝑥(𝑥,𝑦)|+|𝐒′𝑦(𝑥,𝑦)|+|𝐓′
𝑥(𝑥,𝑦)|+|𝐓′

𝑦(𝑥,𝑦)|
) , (8)

where 𝐒′𝑥 and 𝐒′𝑦 denote the gradient images of 𝐒′ in the horizontal
and vertical directions, respectively. 𝐓′

𝑥 and 𝐓′
𝑦 are defined similarly.

The NTG value reaches minimum when two image blocks are perfectly
aligned, while it becomes large when misalignment exists. Hence, the
task of estimating the displacement between image blocks is cast as
finding the minimum of NTG value.

We compute NTG values at only integer shifting positions. To
obtain subpixel accuracy, we interpolate the NTG value grid using
bicubic interpolation. By finding the minimum of the grid, we obtain
the displacement (𝛥𝑥, 𝛥𝑦)T between the floating and reference image
blocks.

3.4. Transform computation

We compute the optimal global affine transform between band
images based on the displacements of blocks. We denote the corre-
sponding pixel positions in floating and reference images by (𝑥, 𝑦)𝖳 and
(𝑢, 𝑣)𝖳, respectively. Under the assumption of affine transform, these
two positions are related by

(

𝑢
𝑣

)

= 𝐏
⎛

⎜

⎜

⎝

𝑥
𝑦
1

⎞

⎟

⎟

⎠

, (9)

where the transform matrix 𝐏 is of the form

𝐏 =
(

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23

)

. (10)

For the 𝑖th block in the floating image, the block displacement de-
noted by (𝛥𝑥𝑖, 𝛥𝑦𝑖)𝖳 can be obtained following the previous subsection.
Let (𝑥𝑖, 𝑦𝑖)𝖳 denote the center of the block in the floating image, then
its corresponding coordinate (𝑢𝑖, 𝑣𝑖)𝖳 in the reference image can be
computed as

𝑢𝑖 =𝑥𝑖 + 𝛥𝑥𝑖,

𝑣𝑖 =𝑦𝑖 + 𝛥𝑦𝑖.
(11)

We aim to find an optimal transform matrix that minimizes the
misalignments of the selected 𝑛 block pairs. We build a matrix filled
with the coordinates 𝑥𝑖 and 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑛, as follows

𝐗 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥1 𝑦1 1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 1 0 0 0
0 0 0 𝑥1 𝑦1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝑥𝑛 𝑦𝑛 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

We further construct a coordinate vector as

𝐮 = (𝑢1,… , 𝑢𝑛, 𝑣1,… , 𝑣𝑛)𝖳. (13)

By reordering the elements of 𝐏 defined in Eq. (10) into a vector

𝐩 = (𝑝11, 𝑝12, 𝑝13, 𝑝21, 𝑝22, 𝑝23)𝖳, (14)

the problem of computing affine transform can be formulated as

𝐩∗ = arg min
𝐩

{‖𝐮 − 𝐗𝐩‖2 + 𝜆‖𝐩‖2}, (15)

where the first term is the sum of fitting errors, and the second term
is a regularization preventing too large displacements. The trade-off
between these two terms is controlled by the parameter 𝜆. In this work,
we set 𝜆 = 0.001. The affine transform can be solved using least squares
as

𝐩∗ = 𝐗𝖳𝐮(𝐗𝖳𝐗 + 𝜆𝐈)−1. (16)

To further improve the robustness of image registration, the RANSAC
[30] strategy can be employed to exclude possible outliers. After
obtaining 𝐩∗, image registration is accomplished by transforming the
pixel coordinates from the floating band image to those of the reference
band image.

4. Experimental results

We evaluate the proposed block-based multispectral image regis-
tration method on both synthetic and real images. The block-based
strategy is compared with the global strategy, on different similarity
measures, including mutual information (MI) [31], robust selective nor-
malized cross correlation (RSNCC) [23] and normalized total gradient
(NTG) [24]. In addition to quantitative and qualitative evaluation of
registration accuracy, an application of spectral color measurement is
also given in the experiments.

4.1. Results on synthetic images

The quantitative evaluation of registration accuracy is conducted on
synthetic images. Fig. 5 illustrates six well-aligned multispectral images
(90 band images to be registered in total) of typical textile fabrics and
yarns. Three printing fabric images are shown in the first row, and two
yarn-dyed fabric images and one yarn image are shown in the second
row. We evaluate the registration accuracy by simulating misaligned
multispectral images from these six images. The imposed transforms
for simulation are different for individual floating band images. To keep
consistency with our real application scenario, in simulated transforms,
rotations and scalings are slight while translations are less than 5 pixels.

Fig. 6 shows the registration results of a multispectral image. There
are false colors (light blue and purple) around the flowers in the mis-
aligned multispectral image in Fig. 6(a). To visualize the misalignment
effect clearly, Fig. 6(b) shows the fusion results of the reference band
image (at 560 nm) and a band images (at 540 nm). After registra-
tion, chromatic aberration is eliminated, as can be seen in both the
multispectral image in Fig. 6(c) and the band fusing result Fig. 6(d) .

We define the registration error as the average Euclidean distance
between the pixel positions of the reference image and the correspond-
ing positions of the transformed image. Table 1 lists the registration
errors of global and block-based registration methods conducted on
the multispectral images in Fig. 5. It is observed that, for a given
similarity measure, the block-based method usually performs better
than its global counterpart. By employing the block strategy and NTG
measure, our method yields the lowest registration error (0.175 pixels)
averaged on all bands.

In addition to the small misalignment existing in our real applica-
tion scenario, we also evaluate our method using large displacements.
Table 2 lists the registration errors when the simulated translations 𝛥𝑥
and 𝛥𝑦 are of values 𝑑 ∈ {4, 8, 12, 16}. It is observed that our method
achieves high registration accuracy in the case of large displacements.

It is also of our interest to evaluate if our method can deal with
slight image magnification in band images. Due to the wavelength-
dependent refractive indexes of the lens [11,12], this circumstance
may occur if we have not conduct geometric calibration. It actually
is not a problem as the affine transform adopted in our method can
naturally handle magnification. For illustration, Fig. 7 compares two
fusion results before and after image registration when inducing 5%
magnification and 3◦ rotation. This registration capability is sufficient
to our real imaging system.
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Table 1
Average registration errors (in pixels) of different methods conducted on the multispec-
tral images in Fig. 5. Registration errors at different bands, as well as the averaged
band errors, are listed. Note that band No. 9 is the reference band.

Global
MI

Block
MI

Global
RSNCC

Block
RSNCC

Global
NTG

Block
NTG (Ours)

1 0.647 0.591 0.464 0.123 0.892 0.128
2 0.202 0.151 1.022 0.126 0.749 0.128
3 0.219 0.275 0.883 0.205 0.514 0.195
4 0.194 0.175 0.899 0.127 0.689 0.127
5 0.247 0.175 0.822 0.179 1.300 0.183
6 0.236 0.261 0.848 0.337 0.366 0.313
7 0.191 0.239 0.940 0.237 0.419 0.212
8 0.201 0.140 1.027 0.119 0.179 0.085
9 – – – – – –

10 0.223 0.276 1.208 0.314 0.370 0.255
11 0.237 0.255 1.296 0.243 0.293 0.213
12 0.218 0.233 0.763 0.244 0.225 0.206
13 0.220 0.199 0.830 0.199 0.387 0.150
14 0.196 0.184 0.877 0.121 0.286 0.100
15 0.195 0.231 0.747 0.204 0.284 0.159
16 0.291 0.187 0.618 0.159 0.435 0.171
Average 0.248 0.238 0.883 0.196 0.493 0.175

Table 2
Average registration errors (in pixels) produced by our registration method when
imposing different transforms on the multispectral images in Fig. 5. The translations
in the simulated transforms are all set to the same value 𝑑. Registration errors at
different bands as well as the averaged band errors are listed. Note that band No. 9 is
the reference band.

𝑑 = 4 𝑑 = 8 𝑑 = 12 𝑑 = 16

1 0.110 0.116 0.115 0.116
2 0.163 0.159 0.166 0.167
3 0.202 0.189 0.200 0.208
4 0.172 0.177 0.174 0.273
5 0.282 0.272 0.283 0.322
6 0.149 0.151 0.155 0.151
7 0.125 0.117 0.118 0.126
8 0.062 0.056 0.062 0.063
9 – – – –

10 0.141 0.141 0.141 0.137
11 0.216 0.195 0.192 0.188
12 0.123 0.121 0.119 0.127
13 0.195 0.179 0.182 0.188
14 0.134 0.127 0.139 0.143
15 0.133 0.124 0.127 0.131
16 0.176 0.173 0.163 0.177
Average 0.159 0.153 0.156 0.168

Although our method is proposed for aligning multispectral band
images, it can also applied to general unimodal images. It is not sur-
prising as the NTG measure, in its nature, can produce high similarity
value when two unimodal images are well aligned. Fig. 8 shows such
an example.

4.2. Results on real images

We further evaluate our method by acquiring real misaligned mul-
tispectral images in the imaging system. Fig. 9 shows the registration
results of a printing fabric image. In the original misaligned image,
evident orange and blue fringes appear in areas between white and
black regions. These fringes disappear after image registration. Fig. 10
illustrates the results of a yarn-dyed fabric image. The fabric is made of
red and white yarns. Due to image misalignment, false colors (yellow
and purple) are visible in the original image. The sharpness of the
boundary between red and white yarns is much improved after image
registration. A multispectral image of printed matter is presented in
Fig. 11. As a result of chromatic aberrations, perceivable artifacts ap-
pear in the image, especially in areas around the eye. After registration,
the artifacts are eliminated and good visual appearance is achieved.

Fig. 7. Registration results of band images with induced magnification and deformation
(rotation). (a) Reference band image, (b) floating band image, (c) fusion of reference
and floating band images before registration, (d) fusion of reference and floating band
images after registration..

Fig. 8. Registration results of unimodal images. (a) Reference image, (b) floating
image, (c) fusion of reference and floating images before registration, (d) fusion of
reference and floating images after registration..

4.3. Computational efficiency

The computational efficiency of different methods is evaluated on
a multispectral image of 16 bands and 1800 × 1400 image size.
These methods are implemented on a personal computer with Intel(R)
Core(TM) i5-2320 CPU at 3.0 GHz and 16 GB RAM using MATLAB
R2013a.

We first evaluate our method using varying number (𝑀 × 𝑁) of
blocks, by setting 𝑀 = 𝑁 ∈ {6, 8, 12, 16}. The average registration
errors of varying numbers of blocks are in the range from 0.133 to
0.152 pixels. This indicates that our method is insensitive to the number
of blocks. Table 3 lists the execution times when using different number
of blocks. It is observed that the execution time increases slightly when
𝑀 ×𝑁 becomes larger.

Then we evaluate the execution times of different methods. The
block-based methods adopt the same framework described in Section 3.
Table 4 shows that our method costs much less time and the speedups
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Fig. 9. A multispectral image of a printing fabric before and after registration. First
row: original image and its close-up view. Second row: image after alignment and its
close-up view. Images are displayed in RGB for visualization . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. A multispectral image of a yarn-dyed fabric before and after registration. First
row: original image and its close-up view. Second row: image after alignment and its
close-up view. Images are displayed in RGB for visualization . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Execution times (in seconds) corresponding to varying number of blocks when
implementing our method by MATLAB.

𝑀 = 6 𝑀 = 8 𝑀 = 12 𝑀 = 16

Time 25.39 26.65 30.57 34.01

Fig. 11. A multispectral image of a printed matter before and after registration. First
row: original image and its close-up view. Second row: image after alignment and its
close-up view. Images are displayed in RGB for visualization.

Table 4
Execution times (in seconds) of different methods and the speedups of our method using
MATLAB and C++ over other methods. Note that all the methods are implemented
using MATLAB unless otherwise noted.

Time Speedup (MATLAB) Speedup (C++)

Global MI 1069.21 40× 319×
Block MI 159.59 6× 47×
Global RSNCC 4032.58 151× 1203×
Block RSNCC 461.53 17× 137×
Global NTG 2365.96 88× 706×
Block NTG (Ours) 26.65 s (MATLAB), 3.35 s (C++)

over other methods are considerable. When implemented using C++,
the execution time is further reduced to 3.35 s, which is sufficient for
our practical application.

4.4. Application of spectral color measurement

In our 16-band multispectral imaging system (Fig. 1), the 31-
channel spectral reflectance for each pixel is mathematically recon-
structed from image intensities using a 31 × 16 reconstruction matrix.
The reconstruction matrix is computed by acquiring 144 color patches
and performing Wiener estimation [4]. Spectral color measurement can
then be performed based on the reconstructed reflectances of acquired
images. Thanks to its fine spatial resolution, our multispectral imaging
system can be used for the spectral color measurement of small-sized
objects such as textile yarns [32]. However, due to the aforementioned
inter-band misalignment, the spectral reflectance is often corrupted,
which results in the measurement error. In the following we show that
the accuracy of spectral color measurement can be greatly improved
with our multispectral image registration method.

Fig. 12 compares the measured spectral reflectances of a white
yarn before and after image registration. Red boxes R1 and R3 are in
the center area of the yarn, while yellow boxes R2 and R4 are near
the edge. The average spectral reflectance of each box is computed
from the pixels in that box. Fig. 12(d) shows that, in the original
image, the spectral reflectances of boxes R1 and R2 are quite different.
The reason is that the reflectance of box R2 is corrupted by image
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Fig. 12. Spectral color measurement of a white yarn. (a) A single yarn, (b) image before registration, (c) image after registration, (d) spectral reflectance curves of boxes R1–R4
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Spectral color measurement of a pink yarn. (a) A single yarn, (b) image before registration, (c) spectral reflectance curves of boxes R1 and R2. The spectral rms is 0.013
and 𝛥𝐸00 under D65 is 1.211, (d) image after registration, (e) spectral reflectance curves of boxes R3 and R4. The spectral rms is 0.007 and 𝛥𝐸00 under D65 is 0.443 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Spectral root-mean-square (rms) errors and colorimetric errors (𝛥𝐸00) under different
CIE standard illuminants between the spectral reflectances of R1 and R2 (before
registration) as well as those of R3 and R4 (after registration) in Fig. 12.

Spectral rms 𝛥𝐸00 (D65) 𝛥𝐸00 (A) 𝛥𝐸00 (F2)

Before 0.153 13.770 13.851 14.790
After 0.011 0.504 0.610 0.705

misalignment. After image registration, the spectral reflectance of box
R4 becomes very close to that of box R3, indicating the improvement
of measurement accuracy.

By setting a spectral reflectance as standard, the difference between
two reflectances can be evaluated using both spectral and colorimetric
errors. The spectral error is computed as the root-mean-square (rms)
between two spectral reflectances. The colorimetric errors are com-
puted using the CIEDE2000 color difference formula [33] under CIE
standard illuminants D65, A, and F2, respectively. Table 5 shows the
spectral and colorimetric errors of the spectral reflectances in Fig. 12.
It is observed that spectral rms error drops from 0.153 to 0.011 after
image registration. The color difference error under D65 reduces from
13.770 to 0.504 units.

Fig. 13 shows the spectral color measurement of a pink yarn. Slight
chromatic aberration exists in the original image. Red boxes R1 and
R3 contain the central part of the yarn, while yellow boxes R2 and R4
contain a larger part. The spectral reflectance curves of R3 and R4 (after
registration) in Fig. 13(e) are much closer to each other, compared with
those of R1 and R2 (before registration) in (c). Table 6 lists quantitative

Table 6
Spectral root-mean-square (rms) errors and colorimetric errors (𝛥𝐸00) under different
CIE standard illuminants between the spectral reflectances of R1 and R2 (before
registration) as well as those of R3 and R4 (after registration) in Fig. 13.

Spectral rms 𝛥𝐸00 (D65) 𝛥𝐸00 (A) 𝛥𝐸00 (F2)

Before 0.013 1.211 0.993 1.082
After 0.007 0.443 0.425 0.420

results, indicating the obvious reduction of spectral and colorimetric
errors after applying image registration.

5. Conclusion

We have proposed a block-based multispectral image registration
method to eliminate the misalignments between band images in a
filter-wheel multispectral imaging system. We first divide the band
image into blocks and choose part of them using a gradient strength
map. Then we compute the displacements of blocks using NTG as the
similarity measure. Finally we compute the global affine transform and
align the band images. Experimental results illustrate the high accuracy
and fast running speed of our method. The method compensates the
chromatic aberration in acquired images, and its application to spectral
color measurement considerably reduces both spectral and colorimetric
errors. The proposed method is quite effective for imaging systems
suffering from inter-band misalignments.
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