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Abstract: Non-invasive, real-time imaging and deep focus into tissue are in high demand in 
biomedical research. However, the aberration that is introduced by the refractive index 
inhomogeneity of biological tissue hinders the way forward. A rapid focusing with sensor-
less aberration corrections, based on machine learning, is demonstrated in this paper. The 
proposed method applies the Convolutional Neural Network (CNN), which can rapidly 
calculate the low-order aberrations from the point spread function images with Zernike modes 
after training. The results show that approximately 90 percent correction accuracy can be 
achieved. The average mean square error of each Zernike coefficient in 200 repetitions is 
0.06. Furthermore, the aberration induced by 1-mm-thick phantom samples and 300-µm-thick 
mouse brain slices can be efficiently compensated through loading a compensation phase on 
an adaptive element placed at the back-pupil plane. The phase reconstruction requires less 
than 0.2 s. Therefore, this method offers great potential for in vivo real-time imaging in 
biological science. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
In recent years, the development of biological imaging was focusing on real-time, high 
resolution and deep in vivo imaging [1,2]. Over the past two decades, researchers have 
overcome the diffraction limit and provided new insights into subcellular structures, yet the 
spatial resolution was improved at the cost of the temporal resolution. Adaptive optics (AO) 
becomes a valuable technique for high-resolution microscopy. It compensates the aberrations 
introduced by the specimens and obtains high-resolution images in deep biological tissue [3]. 
AO is originally developed for telescopes to overcome the atmospheric distortions, which 
degrade the image qualities of the extraterrestrial objects. Recently, it has been applied in 
optical microscopy to recover diffraction-limited imaging deep in the biological tissue [4–6] 
by using an active element such as a deformable mirror (DM) or a spatial light modulator 
(SLM). However, the imaging speed is fundamentally limited by the refresh rate of the active 
element. Moreover, the total fluorescent photon budget is also limited, which means that to 
obtain a higher signal to background ratio, fewer photons should be used as the feedback 
signal to measure the wavefront aberrations. Traditional adaptive optics systems utilize a 
wavefront sensor such as a Shack-Hartman wavefront sensor to measure the aberrations [7,8]. 
For example, Kai Wang et al. used the de-scanning, laser-guided star and the direct wavefront 
detection methods to achieve the rapid adaptive optical recovery [9]. However, the wavefront 
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polarized light to exit. To further ensure the polarization direction of light is consistent with 
the direction required by the SLM, we placed a polarizer after the PBS. The incident laser 
beam is phase-modulated by using a spatial light modulator (SLM, PLUTO-NIR-011-A, pure 
phase, 60Hz, Holoeye photonics), on which the compensation patterns are loaded. The BS is 
used to make the laser beam perpendicularly project to the SLM and reflect. The reflected 
laser beam focuses on the focal plane after passing through the relay lenses L5 and L6, 
objective OBJ1 (RMS4X, Olympus, 4X / 0.10 NA) and sample. To detect the point spread 
function, another objective OBJ2 (RMS4X, Olympus, 4X / 0.10 NA) and relay lens L7 are 
mounted and the intensity information is collected by a CMOS camera. Before experiments, 
the SLM has been calibrated. We utilized the interferometric method to calibrate the phase 
modulation [15] and set the SLM for a linear 2π phase distribution over all 8-bit gray level to 
assure the phase response as stable as possible. Furthermore, the number of the pixels and the 
usage area of the SLM match the pixel interval of the CMOS camera. 

2.2 Machine learning-guided fast AO compensation algorithm 

The aberrations of the wavefront can be quantized as the difference in its phase or optical path 
length from the ideal (e.g., spherical or planar) form. Mathematically, it can be described as a 
summation of the Zernike polynomials, a set of basic functions that are orthogonal within a 
unit circle [16] (in this case, the objective back pupil). The phase distribution can be 
expressed as: 

 
1 1 2 2 3 3

10 10

( , ) ( , ) ( , ) ( , )

( , )

phase x y a Z x y a Z x y a Z x y

a Z x y

ψ = + +

+ ⋅⋅⋅ + + ⋅⋅ ⋅
 (1) 

where ( , )phase x yψ is the phase distribution on the pupil plane; ( , )( 1, 2,3, )nZ x y n = ⋅⋅ ⋅  are 

Zernike modes; ( 1, 2,3, )na n = ⋅⋅ ⋅  are Zernike coefficients. Low-order Zernike modes are 

related to the primary aberrations such as spherical aberration, coma, and astigmatism. 
Different combinations of the Zernike coefficients in a phase distribution at the back-pupil 
plane gives distinguishable point spread function at the focal plane. In other words, if we can 
reconstruct the phase distribution with proper Zernike modes and coefficients at the back-
pupil plane, the aberrations induced by the scattering can be compensated. Therefore, the aim 
is to establish a mapping between the Zernike coefficients and the point spread function. 

Zernike mode 1Z means a piston where the size of its coefficient has no effects on the 

point spread function at the back-pupil plane. Therefore, the phase reconstruction is without 
regard to mode 1Z . Then the other Zernike modes are divided into two categories: The tip-tilt 

modes (Zernike modes 2Z , 3Z ) and the high-order modes (Zernike modes ( 4,5,6, )iZ i = ⋅⋅ ⋅ ). 

The aberrations in tip-tilt modes have a linear relationship with their coefficients, which can 
be calculated directly by Eq. (2)–(3): 

 2 2

dx D
a

f

π
λ
⋅= ⋅  (2) 

 3 2

dy D
a

f

π
λ
⋅= ⋅  (3) 

where λ is the wavelength of the laser beam, f  is the focal length of lens L7 and D is the 

beam diameter on the SLM. dx  and dy  are the displacements of the center of the point 

spread function in horizontal and vertical directions as illustrated in Fig. 3(a), respectively. 
For the high-order modes, a machine learning based reconstruction is proposed. There is a 
non-linear mapping between the Zernike coefficients and the point spread function through 
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objective OBJ2 and then be detected by the CMOS camera. After the compensation phase 
pattern was obtained, it was superimposed onto the phase-mask and then loaded to SLM. We 
conducted 200 repeated experiments by only changing the phase-mask and get a statistical 
result that more than 80% distorted point spread functions were improved. Figure 4 shows 
four groups of the compensation results in 200 repetitions. Figure 4(a) records the point 
spread functions before (left) and after (right) compensation, respectively. Comparing the 
intensity profile at the center section of the point spread functions in Fig. 4(d), we can find 
that the center of the point spread function moved to the ideal spot location after tip-tilt 
correction and there is not only an increase on the intensity and a decrease on full width at 
half maxima (FWHM) after compensation. The reconstructed first ten Zernike coefficients (in 
orange bar) and corresponding 1st–15th Zernike coefficients (in the blue bar) of phase-mask 
are illustrated in Fig. 4(b). The mean square error (MSE) of coefficients between the 
reconstructed phase and the phase-mask illustrate the ability to reconstruct the aberration. 
MSE of these four groups are 0.034, 0.14, 0.011, 0.015 and the average MSE of 200 
repetitions is 0.060. Figure 4(c) is the compensation phase pattern applied on the SLM 
consists of the reconstructed first ten Zernike modes. According to the experimental 
performance, we infer that when the main parts of coefficients are calculated correctly, the 
distortion can be compensated even though some minors are inaccurate. 

To verify the performance of our method in real scattering media, 1-mm-thick phantoms 
and 300-µm-thick mouse brain slices were applied. We directly mounted the real scattering 
medium on a vertical stage between two objectives and the system would calculate the proper 
Zernike coefficients according to the distorted point spread function. 

 

Fig. 5. Experimental compensation results of the 1-mm-thick phantom slice. (a)–(c) Point 
spread functions scattered by three different areas in a 1-mm-thick phantom sample (up) and 
corrected by our machine learning guided AO system (down). Inside the colored dotted boxes 
are the enlarged views of each point spread function. (d) Section intensity profile of the point 
spread functions without correction (NO AO), after tip-tilt correction (T-T corr) and after 
machine learning fully correction (ML-AO). The scale bar in (a)–(c) is 100 μm. 

Figure 5 provides the compensation results of a 1-mm-thick phantom. The distorted point 
spread functions depicted in Fig. 5(a)–5(c) are more irregular than that induced by phase-
mask and the corrected point spread functions were not as smooth as that in Fig. 4(a). This is 
because that the phantom induces multiply scattered light, which contains high-order 
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aberrations. The section intensity profile of the point spread functions in Fig. 5(d) illustrates 
that the proposed AO method dramatically improves the point spread function quality where 
the intensity increased by 3–5 times. 

 

Fig. 6. Experiment compensation results of 300-µm-thick mouse brain slices. (a)–(b) are two 
typical scattered (NO AO) and corrected (ML-AO) point spread functions. The corresponding 
blue-dashed and magenta-dashed ROI are enlarged as below. (c)–(d) Intensity profile at the 
center of the point spread function before and after correction (indicated with blue and 
magenta arrows respectively). (e)–(f) Amplitude distribution of Zernike coefficients calculated 
with our method. The inserted pictures demonstrate the compensate phase pattern loaded on 
SLM. The scale bar in (a)–(b) is 100 μm. 

The 300-µm-thick brain tissue slices are prepared as follows: Mice were rapidly 
anesthetized with chloral hydrate (5%, w/v, 0.01 ml/g, i.p.) and transcardially perfused with 
ice-cold 0.01 mol phosphate-buffered saline (PBS, Solarbio) and paraformaldehyde (4% in 
PBS w/v, Sinopharm Chemical Reagent Co.Ltd). Brain tissues were collected and incubated 
in the paraformaldehyde solution at 4°C overnight for uniform fixation through the sample. 
To remove the water remained in the brain tissue, incubated the sample in sucrose (30% (w/v) 
in PBS) at 4 °C for 24–48 hours until the specimen sank to the bottom of the tube. After that, 
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300-µm-thick brain slices were sectioned by using a cryostat (CM3050S, Leica). Sections 
were immediately embedded into optical clearing reagent in 2 minutes and mounted in the 
holder. Figure 6 presents two typical compensation results within 300-µm-thick mouse brain 
slices. The distortions induced by mouse brain slices are more complicated than phase-mask 
and phantoms. As shown in Fig. 6(c)–6 (d), although our method only compensates the first 
ten orders, we can still improve the intensity and FWHM of the point spread function of the 
samples, which contain Zernike modes more than 10 orders. 

4. Conclusion 
We proposed a rapid AO aberration compensation method based on the machine learning 
algorithm. The time consumption for each phase reconstruction is less than 0.2 s (CPU Intel 
Xeon(R) E5–2667 v4, NVIDIA Tesla P4). The experimental correction accuracy is larger 
than 85% and each compensation process with CMOS camera (DMK 23UV024, 640 × 480 
(0.3 MP) Y800 @ 115 fps) signal collection and SLM (PLUTO-NIR-011-A, pure phase, 
60Hz) pattern loading is approximately 0.08 s. It is also capable of compensating low-order 
aberrations from both 1-mm-thick phantoms and 300-µm-thick mouse brain slices, 
respectively. If we utilize GPU acceleration or FPGA control acceleration, we are able to 
further expand the order of the Zernike modes as training sets, thus achieving more complex 
aberration corrections, and deeper imaging depth. Based on the advantages of the machine 
learning method, although the training set takes a few hours of training, the illumination time 
required for the corrections on the experiment is very short, thus dramatically reducing 
photobleaching and photodamage. 

In conclusion, we can achieve high-speed wavefront aberration corrections with machine 
learning and recover near diffraction-limited focal spots. With these advantages, our method 
has great potential to be applied to rapid deep tissue imaging in biological science. 
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