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Decomposition of shading and reflectance
from a texture image
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A method for decomposing shading and reflectance components from a color texture image is presented. The
shading intensity of each pixel is either computed or synthesized according to its characteristics, and
the reflectance is consequently decomposed, with additional denoising when necessary. The performance of
the proposed method is evaluated using real color texture images. © 2008 Optical Society of America

OCIS codes: 100.3020, 100.2960, 330.1690.
For an object without specular reflection, the image
intensity is determined by the interaction between
two intrinsic components: shading and reflectance.
The shading is affected by the lighting direction and
surface geometry, and the reflectance describes the
characteristic of light reflection. The appropriate de-
composition of these two components is an important
issue in computer vision and will benefit image con-
tent interpretation and scene simulation. In the lit-
erature, some works have been conducted to recover
the shading of generic objects from one or more im-
ages [1,2].

Unlike previous works, this Letter attempts to ac-
curately decompose the shading and reflectance com-
ponents of color texture images with approximate
regular texture structures, such as those of textile
fabrics as shown in Fig. 1. The numbers of dominant
colors are usually limited, but their spatial color dis-
tribution is complicated due to the yarn structures
and imaging noise, which always makes the compo-
nent decomposition difficult.

For a texture surface with only diffuse reflection,
the intensity Ic�p� of the cth channel �c=1,2,3� at
pixel position p is the product of a geometry term g�p�
and a reflectance term �c�p�,

Ic�p� = g�p� · �c�p�. �1�

Without loss of generality, it is assumed that the re-
flectance intensities are constant for the pixels in the
same region, and the color variations are due to sur-
face geometry. Suppose there are K regions, let
their colors are always the blend of two or more domi-
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m�k�= �m1�k� ,m2�k� ,m3�k��T be the representative
color of the kth region. Suppose pixel p belongs to the
kth region, Eq. (1) can be written as

Ic�p� = ��p,k�mc�k�, �2�

where ��p ,k� is the shading intensity of pixel p with
respect to the kth region. In a color image the ��p ,k�
is solved as

��p,k� = m−�k�I�p�, �3�

where the superscript – denotes pseudo-inverse and
I�p�= �I1�p� ,I2�p� ,I3�p��T. The pseudo-inverse of m�k�
is calculated by using singular value decomposition
[3].

Owing to the complicated spatial and color distri-
bution, it is always difficult to classify every pixel
into a region definitely [4]. In this Letter, we propose
an
alternative strategy. For pixel p, its relative fitting
error with respect to each region is computed as

e�p,k� =
�I�p� − ��p,k�m�k��

�I�p��
=

�I�p� − m�k�m−�k�I�k��

�I�p��
,

�4�

where k=1. . .K. A pixel is classified to a certain re-
gion provided that its error is significantly smaller
than those of other regions. More precisely, the label
of pixel p should be
l�p� = �k if e�p,k� � �e�p,j�, j = 1 . . . K,j � k

ambiguous otherwise � , �5�
where � controls the stringent level and is set to be
0.5 in this Letter. Consequently, the initial shading
intensity ��p� of unambiguous pixel p is ��p , l�p��.
For the boundary pixels in between adjacent regions,
nant colors. Accordingly, the initial shadings of these
pixels are considered to be unreliable.

Generally, the texture strength of a region is re-
lated to the dominant color and is different from each

other [see Fig. 1(b)]. To obtain a uniform shading dis-
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tribution, the shading intensities of the unambiguous
and nonboundary pixels are adjusted as

�̃�p� =
��p� − �s

�s
�t + �t, �6�

where �s and �s are the mean and standard deviation
of the shading of the region that pixel p belongs to
and �t and �t are the mean and standard deviation of
the shadings of the reference region.

To generate shadings for the ambiguous and
boundary pixels, we present a technique referred as
“shading synthesis,” which is inspired by the texture
synthesis technique [5]. Figure 2 shows two neigh-
borhoods for shading synthesis. The 7�3 horizontal
neighborhood is for the approximately vertical
boundaries, whereas the 3�7 vertical neighborhood
is for approximately horizontal boundaries. The
shading synthesis runs on the image in scan-line or-
der. The best matched pixel q is the one whose neigh-
boring shading distribution most closely resembles
that of the pixel p currently under processing as de-
scribed in the following:

��p� = arg min
��q� � 	

p*,q*

���p*� − ��q*��2
1/2
, �7�

where p*�N�p� and q*�N�q� are the neighboring
pixels of p and q, respectively.

Based on the recovered shading and the original
image, the reflectance �̃c�p� can be easily computed.
In practice, as the previous shading adjustment may
induce unnecessary spatial variation to the computed
reflectance, a further denoising process is applied,

Fig. 1. (Color online) (a) Color texture image and (b) en-
larged area.

Fig. 2. (a) Horizontal neighborhood and (b) vertical neigh-
borhood for shading synthesis. The current pixel under pro-

cessing is indicated by symbol “x.”
�̃c�p� = fNL�Ic�p�/�̃�p��, �8�

where the function fNL�·� represents the noise filter-
ing operator. In this Letter, we use the nonlocal fil-
tering technique for its good denoising capability [6].

In the experiment, various texture images are used
to evaluate the proposed method. The representative
color of each region is obtained by manually selecting
seed pixels and calculating their average color. A clas-
sical baseline method is employed for comparison
purposes. The baseline method identifies material
variation boundaries, zeros the derivatives of the
boundary pixels, and then integrates the derivatives
to obtain the shading image [2]. Figure 3 shows the
results of the two methods in the enlarged area. It is
observed that, owing to zeroing derivates, the shad-
ing in the boundary is almost flat, and the recovered
reflectance still contains obvious shading information
in the baseline method. In comparison, the decom-
posed shading of the proposed method is continuous
and uniform, and the recovered reflectance contains
much less shading variations. Figure 4 shows the de-
composition results of another image with a different
texture structure and color pattern. Again, the pro-
posed method produces satisfactory results.

In summary, this Letter proposes a novel method
to decompose shading and reflectance components
from a single texture image. Each pixel is classified
into a region or labeled as ambiguous. The shadings
of the definitely classified pixels are computed with
respect to the dominant colors, and the ambiguous
and boundary pixels are generated using a shading
synthesis technique. The reflectance component is
computed from the original image and the recovered
shading with additional nonlocal denoising. The pro-
posed work is of potential application in texture
simulation and image content analysis.
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Fig. 3. (Color online) (a), (b) Shading and reflectance com-
ponents recovered by the baseline method. (c), (d) Decom-
posed shading and reflectance composition by the proposed
method.

Fig. 4. (Color online) (a) Original image is decomposed
into the (b) shading component and (c) reflectance compo-
nent by the proposed method.
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