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Abstract:  In multispectral imaging, Wiener estimation is widely adopted 
for the reconstruction of spectral reflectance. We propose an improved 
reflectance reconstruction method by adaptively selecting training samples 
for the autocorrelation matrix calculation in Wiener estimation, without a 
prior knowledge of the spectral information of the samples being imaged. 
The performance of the proposed adaptive Wiener estimation and the 
traditional method are compared in the cases of different channel numbers 
and noise levels. Experimental results show that the proposed method 
outperforms the traditional method in terms of both spectral and 
colorimetric prediction errors when the imaging channel number is 7 or less.  
When the imaging system consists of 11 or more channels, the color 
accuracy of the proposed method is slightly better than or becomes close to 
that of the traditional method. 
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1. Introduction  

Recently, multispectral imaging has been widely studied in the reconstruction of the spectral 
information of the samples being imaged and the recovery of the spectrums of illuminants [1-
10]. In a multispectral imaging system, usually more than three imaging channels are used. 
There are also attempts to recover spectral reflectance using traditional 3-channel digital 
camera or color scanner [11-13].  

In the literature of color imaging, several reflectance reconstruction techniques, such as 
Wiener estimation [2-4, 8-10], pseudoinverse method [1, 7, 11, 12], and finite-dimensional 
modeling [4, 11], have been proposed. Among these techniques, Wiener estimation is among 
the most widely adopted ones, which involves three matrixes, i.e., spectral responsivity, 
autocorrelation matrix of reflectance, and imaging noise. Shimano proposed a method for 
reflectance recovery using Wiener estimation without a prior knowledge of the spectral 
reflectance and system noise [2]. Murakami et al. proposed a nonlinear reflectance estimation 
method based on Gaussian mixture distribution and Wiener estimation [8]. Shen, et al., found 
that the color accuracy of the reflectance reconstruction can be improved by combining three 
different techniques [4].  

For a real imaging system, its behavior sometimes departs from the theoretic imaging 
process, and therefore the special selection of training samples has obvious impact on the 
color accuracy of the reflectance reconstruction [8, 9, 12, 13]. To cope with this problem, 
Haneishi et al. proposed to divide the sensor space into several sub-blocks to improve Wiener 
estimation [9]. Currently, Shen and Xin introduced an optimized estimation method for 
spectral reflectance reconstruction [12]. Their method consists of three main steps: (1) select a 
subset of training samples whose responses are close to that of the test sample, (2) calculate 
the weighting of each training sample, and (3) calculate the transform matrix for the test 
sample. DiCarlo and Wandell also proposed a method to recover high-dimensional reflectance 
from low-dimensional response by selecting training samples adaptively [13]. 

In this study, we propose a method to reconstruct spectral reflectance by using a modified 
Wiener estimation method, without a prior knowledge of the spectral characteristics of the 
samples being imaged. We investigate whether the accuracy of reflectance estimation can be 
improved if the training samples for calculating the reflectance characteristics are adaptively 
selected and appropriately weighted. The novelty of the proposed method is mainly in the 
manner of training sample selection and autocorrelation matrix construction. The performance 
of the proposed adaptive Wiener estimation and the traditional methods are compared in cases 
of different channel numbers and different noise levels. 

2. Formulation of multispectral imaging 

In this study the multispectral imaging system consists of a monochrome digital camera and 
several narrowband filters, and the response of the camera is proportional to the intensity of 
light entering the sensor. Let l(λ) be the spectral power distribution of the imaging illuminant, 
r(λ) be the spectral reflectance of the sample being imaged, fc(λ) be the spectral transmittance 
of the cth (1≤c≤C) channel, and s(λ) be the spectral sensitivity of the monochrome camera, 
then the response vc of the cth channel can be represented as 

ccc

cccc

nbdrm

nbdsfrlv

++=

++=

∫

∫
λλλ

λλλλλ

)()(

)()()()(
,                                                 (1) 

where bc is the bias response caused by dark current, and nc is the zero-mean imaging noise. 
As l(λ), fc(λ) and s(λ) are unknown a prior, they are merged into a single term mc(λ), which is 
referred as spectral responsivity. In practical computation, the continuous functions can be 
replaced by their sampled counterparts so that the integral can be written as summation. If N 
uniformly spaced samples are used over the visible spectrum, Eq. (1) can be written in vector 
and matrix notation as 
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nbMrv ++= ,                                                                                   (2) 

where v is the C×1 vector of response, M is the C×N matrix of spectral responsivity, r is the 
N×1 vector of reflectance, b is the C×1 vector of dark current response, and n is the C×1 
vector of imaging noise. In the mathematical recovery of spectral responsivity M, two 
constraints, i.e., non-negativeness and smoothness, are usually imposed [12, 14]. As the filters 
used in this study are of narrowband, only the non-negativeness constraint for M is needed: 

0≥jim                                                                                                 (3) 

where 1 ≤ i ≤ C and 1 ≤ j ≤ N. For the detailed solution of M, interested readers are referred to 
Ref. 14. If let u=v-b, Eq. (2) becomes  

nMru += .                                                                                         (4) 

3. Wiener estimation 

The estimation of reflectance is to find an N×C matrix W that can transform the response u 
into the estimated reflectance r̂ , 

Wur =ˆ ,                                                                                              (5) 

such that the mean square error between the actual and predicted reflectance is minimized. In 
Wiener estimation, the transform matrix is 

1
WE )( −+= n

T
r

T
r KMMKMKW ,                                                      (6) 

where Kr and Kn are the autocorrelation matrices of reflectance and noise, respectively: 

}{ T
r E rrK = ,                                                                                      (7) 

},,,diag{ 22
2

2
1 Cn σσσ �=K .                                                                 (8) 

In this study the noises of different channels are assumed to be independent, and hence Kn 
is a diagonal matrix. In an actual imaging system, the noise variance of the cth channel is 
estimated as 

{ }22ˆ rm ccc uE −=σ ,                                                                           (9) 

where ||x|| denotes Frobenius norm of vector x, uc is the response of the cth channel, and mc is 
the spectral responsivity of the cth channel. 

4. The proposed method 

From Eq. (6), it is noticed that the transform matrix WWE in Wiener estimation is decided by 3 
matrixes, i.e., M, Kr, and Kn. M and Kn are fixed for a given imaging system, while Kr 
contains the correlation characteristics of the reflectances of the training samples. In 
traditional Wiener estimation, Kr is usually calculated from all the available training samples 
when it is not easy to get the ensemble of the candidate sample (test sample) in some practical 
applications. However, it is reasonable to argue that, if the training samples for calculating Kr 
are close to the candidate sample, the transform matrix W should contain more meaningful 
characteristics to the candidate sample. Based on this consideration, we propose a new method 
for reflectance construction, which is referred as adaptive Wiener estimation in this study. 

Suppose the response of the candidate sample is u, and then its corresponding reflectance 
r̂  can be calculated according to the traditional Wiener estimation in Eq. (6). The training 
samples with reflectance ri for calculating Kr can then be selected according to their spectral 
similarity to r̂ . In the calculation of spectral similarity, the reflectance is normalized so that 
its summation is equal to 1. The reason for normalization is that statistical information of the 
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reflectance is mainly decided by its shape, not magnitude. The spectral similarity consists of 
two terms, i.e., mean spectral distance and maximum spectral distance: 
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where α is a scaling factor, |x| denotes the absolute values of the elements of vector x. In this 
study, we let α=0.5. For two reflectances with similar shapes, both of the mean and maximum 
distances should not be large. When ri  is very similar to r̂ , di is close to 0. 

We select L training samples according to their spectral similarities, and sort ri (1 ≤ i ≤ L) 
in ascending order, or more specifically, d1 ≤ d2 ≤ …  ≤ dL. Among the selected L training 
samples, it is reasonable to assume that the spectral characteristic of the more similar ri (1 ≤ i 
≤ L) should be more close to that of the candidate sample. Therefore, the L training samples 
are not equally treated in the calculation of Kr. Or equivalently, the closer training samples 
should contribute more in the Kr calculation.  

Let Ω be the set of training samples, ri is repeated ki times: 
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where the repeat time ki for the ith (1 ≤ i ≤ L) selected training sample is calculated as 

⎣ ⎦5.0)/( += γ
iLi ddk ,                                                                      (12) 

where the operator ⎣x⎦ rounds x to the nearest integer towards zero, γ  is the exponential factor. 
In this study, we let γ =1. As the rL is the most dissimilar training sample to r̂ , kL=1. 

By this way, the number of training samples in set Ω is usually larger than L. Then the 
transform matrix of the adaptive Wiener estimation becomes 

1
,,AWE )( −
ΩΩ += n

T
r

T
r KMMKMKW ,                                           (13) 

where Kr,Ω is the autocorrelation matrix of the reflectances in the training set Ω, and Kn is the 
same as Eq. (8).  By substituting Eq. (13) into Eq. (5), the spectral reflectance of the candidate 
sample with response u can be reconstructed. 

It is noted that the matrix WAWE need to be calculated per pixel in a multispectral image 
and thus the proposed method is computationally expensive than traditional Wiener estimation. 
This is actually the common shortcoming for almost all adaptive methods.  Nevertheless, it is 
worthwhile to adopt the adaptive method when the color accuracy is very important. 

5. Experimental results 

In the experiment, the multispectral imaging system includes a QImaging monochrome digital 
camera model Retiga-EXi, and a liquid crystal tunable filter (LCTF) made by Cambridge 
Research and Instrument Co. The LCTF can tune the center wavelengths of the narrowband 
filters electronically. The color target was GretagMacBeth Color Checker DC (CDC), and the 
reflectances of the color patches on the CDC were measured using a GretagMacBeth 
spectrophotometer 7000A with an interval of 10 nm. The multispectral images of the CDC 
were acquired under an approximate D65 lighting condition, and the spatial non-uniformity of 
the light field was corrected using a white paper. Totally 198 color patches on the CDC were 
used for reflectance construction, excluding the glossy ones and the duplicated darkest ones. 
The inherent characteristics of the imaging system, i.e., the spectral responsivity M and the 
noise variances in Eq. (9), were estimated using the CDC. Figure 1 shows the 31-channel 
spectral responsivity M. In the experiment of spectral reflectance estimation, the CDC served 
as the test target. The reflectances of 1269 Munsell color chips, which were obtained from the 
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website http://spectral.joensuu.fi, were used as training samples. For the sake of data 
consistency with the measured CDC reflectances, the reflectances of the Munsell chips were 
also re-sampled at 10 nm interval. The whole collection of the Munsell reflectances is shown 
in Fig. 2. It is noted that the multispectral images of the Munsell chips are not needed in this 
study. The autocorrelation matrix Kr for the traditional Wiener estimation is calculated from 
all the 1269 reflectances of the Munsell chips, while the matrix Kr,Ω for the proposed adaptive 
method is calculated from the subset of the selected training reflectances specified in Eq. (11).  
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Fig. 1. The spectral responsivities of the 31 channels of the multispectral imaging system. 
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Fig. 2. Reflectances of the 1296 Munsell color chips. 

 
To evaluate the color accuracy of the reflectance reconstruction methods in detail, the 

experiment was conducted on two data sets, one was synthetic data and the other was real data. 
In the synthetic data part, the influences of the different combinations of channel number C 
and noise level were investigated; in the real data part, only the influences of C were studied 
as the noise level was decided by the actual imaging system. The values of channel number C 
are 6, 7, 11, or 16. The reason for choosing these C values is because when the channel 
sequences are uniformly selected, both of the 1st and 31st channels can be included. Table 1 
lists the corresponding channel sequences in each case.  

 
 

#86655 - $15.00 USD Received 20 Aug 2007; revised 29 Oct 2007; accepted 30 Oct 2007; published 9 Nov 2007

(C) 2007 OSA 12 November 2007 / Vol. 15,  No. 23 / OPTICS EXPRESS  15549



 

Table 2. The corresponding channel sequences of different channel number C 

channel number C channel sequences 

6 1,7,13,19,25,31 

7 1,6,11,16,21,26,31 

11 1,4,7,10,13,16,19,22,25,28,31 

16 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 

 
The performance of the proposed method is compared with the traditional Wiener 

estimation and the optimization method [12]. The comparison between the proposed method 
and the traditional Wiener estimation was carried out on both synthetic and real data. As the 
optimization method requires the responses of training samples, its comparison with the 
proposed method was conducted only on the synthetic data. 

The color accuracy of the reflectance reconstruction is evaluated in terms of both spectral 
and colorimetric error. The spectral rms error between the actual reflectance r and its estimate 
r̂  is calculated as 

2/1
)ˆ()ˆ(

rms ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−=
N

T rrrr .                                                               (14) 

The colorimetric error, denoted as ΔE00*, is calculated according to the CIEDE2000 color 
difference formula [15] under several standard illuminants such as D65 and F2. 

5.1. Synthetic data 

The objective of this part is to comprehensively evaluate the performance of the proposed 
method under various noise levels and different channel numbers. The spectral responsivity M 
is supposed to be known a prior, and the response usyn of the multispectral imaging system is 
synthesized as 

σnMru +=syn
,                                                                               (15) 

where nσ denotes additive Gaussian noise with zero-mean and variance σ2. The noise variance 
is related to the signal-to-noise ratio (SNR):  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

)(Tr
log10SNR

σ

T
rMMK ,                                                       (16) 

where the term Tr(MKrM
T) is the average signal power captured by the multispectral imaging 

system. In this experiment, we investigated the color accuracy of reflectance reconstruction 
under three SNRs, i.e., ∞, 50, and 40. SNR=∞ means there is no noise in the imaging system. 
The noise variance σ 2 of the corresponding SNR can be obtained by transforming Eq. (16).  

It is noted that the response usyn in Eq. (15) is simulated for each candidate sample on the 
CDC chart. The responses of the Munsell chips are not simulated for the proposed adaptive 
Wiener estimation as the selection of training samples is carried out in the reflectance space. 
For the optimization method, however, the responses of the Munsell samples are also 
synthesized as its training sample selection is conducted in the response space [12]. 
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Fig. 3. The distribution of average reflectance rms error (left) and average color difference 
error (right) with respect to the training sample number L. Channel number C=6 and SNR=50. 

 
It is of interest to investigate the influence of training sample number L on the accuracy of 

reflectance reconstruction. Figure 3 shows the distributions of average spectral error and 
colorimetric error with respect to L when C= 6 and SNR=50, indicating L=50 is appropriate. 
In the experiment we found that the distribution trends were different when C and SNR 
changed, but the variation of color accuracy was not large. Therefore we simply use L=50 in 
the following experiments. 

Figure 4 shows the selected training sets Ω for the given candidates. As expected, the 
shapes of the training samples are similar to those of the candidate samples. 

400 450 500 550 600 650 700

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

re
fle

ct
a

nc
e

wavelength, nm

 candidate sample
 training set

400 450 500 550 600 650 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

re
fle

ct
a

nc
e

wavelength, nm

 candidate sample
 training set

 
Fig. 4. Two typical examples of the training sets for the given candidate samples. Channel 
number C=6 and SNR=50. 

 
Table 2 compares the color accuracy of the proposed adaptive Wiener estimation with the 

tradition Wiener estimation and the optimization method. In the experiment, the three-
dimensional response space of the original optimization method [12] is extended to 6-, 7-, 11-, 
and 16-dimensional, respectively. It is found that the color errors of the optimization method 
are generally higher than those of the Wiener estimation and the proposed method, especially 
when SNR is low. This indicates that the optimization method doesn’t offer good performance 
for the multispectral imaging system in this study. In the following, we compare the color 
accuracy of the proposed method and the Wiener estimation method in detail. 
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Table 2. Comparison of the spectral and colorimetric errors of the proposed adaptive Wiener estimation (AWE), the 
traditional Wiener estimation (WE), and the optimized  method (Opt.) [12] when using synthetic data. 

 
 
 
 
 

spectral rms ΔE00* under D65 ΔE00* under F2 channel 

number C 
SNR method 

mean std. max mean std. max mean std. max 
AWE 0.0108 0.0117 0.0978 0.82 1.00 7.17 0.84 1.26 10.86 
WE 0.0157 0.0113 0.0642 1.17 0.98 5.45 1.44 1.27 6.72 ∞ 
Opt. 0.0144 0.0133 0.1190 1.34 1.08 8.82 1.23 1.38 15.87 
AWE 0.0107 0.0103 0.0751 1.10 1.01 6.21 1.11 1.19 8.88 
WE 0.0160 0.0111 0.0636 1.41 1.08 7.10 1.65 1.33 7.66 50 

Opt. 0.0148 0.0136 0.1182 1.49 1.21 8.98 1.38 1.51 16.07 
AWE 0.0126 0.0073 0.0485 1.99 1.86 13.85 1.97 1.90 15.45 
WE 0.0180 0.0103 0.0625 2.28 1.88 11.57 2.40 1.97 13.04 

6 

40 

Opt. 0.0191 0.0130 0.1168 2.38 1.96 11.42 2.28 2.31 16.42 
AWE 0.0090 0.0118 0.0991 0.75 0.92 7.73 0.77 1.36 10.94 
WE 0.0112 0.0077 0.0391 0.95 0.63 3.07 0.99 1.05 9.37 ∞ 
Opt. 0.0114 0.0107 0.0875 1.08 0.92 6.09 1.02 1.13 10.38 
AWE 0.0087 0.0085 0.0657 0.92 0.88 5.46 0.93 1.13 7.96 
WE 0.0116 0.0074 0.0386 1.11 0.80 5.96 1.16 1.08 8.79 50 

Opt. 0.0117 0.0097 0.0916 1.27 1.00 6.52 1.21 1.19 11.00 
AWE 0.0111 0.0054 0.0446 1.75 1.79 15.74 1.73 1.77 15.80 
WE 0.0146 0.0067 0.0342 1.98 1.85 14.61 2.03 1.83 14.01 

7 

40 

Opt. 0.0164 0.0131 0.1501 2.16 1.97 13.45 2.19 2.19 16.55 
AWE 0.0049 0.0039 0.0267 0.19 0.21 2.29 0.20 0.27 3.02 
WE 0.0060 0.0048 0.0245 0.14 0.08 0.47 0.16 0.14 1.19 ∞ 
Opt. 0.0049 0.0039 0.0315 0.24 0.18 1.37 0.23 0.21 2.13 
AWE 0.0061 0.0038 0.0303 0.61 0.54 3.55 0.60 0.51 2.92 
WE 0.0064 0.0025 0.0166 0.58 0.57 3.30 0.58 0.55 3.68 50 

Opt. 0.0069 0.0046 0.0489 0.64 0.55 3.20 0.64 0.54 4.00 
AWE 0.0105 0.0045 0.0393 1.64 1.62 11.56 1.62 1.55 9.95 
WE 0.0125 0.0044 0.0257 1.76 1.74 10.83 1.73 1.67 9.24 

11 

40 

Opt. 0.0144 0.0048 0.0392 1.82 1.75 10.95 1.79 1.75 13.82 
AWE 0.0038 0.0029 0.0172 0.10 0.16 1.84 0.11 0.14 1.73 
WE 0.0038 0.0046 0.0220 0.04 0.02 0.19 0.08 0.04 0.33 ∞ 
Opt. 0.0030 0.0026 0.0218 0.12 0.10 0.67 0.13 0.11 1.04 
AWE 0.0056 0.0032 0.0253 0.58 0.47 3.20 0.59 0.46 3.29 
WE 0.0054 0.0019 0.0137 0.53 0.47 3.55 0.59 0.51 3.58 50 

Opt. 0.0060 0.0021 0.0234 0.58 0.55 4.34 0.64 0.64 4.44 
AWE 0.0103 0.0044 0.0401 1.51 1.25 9.04 1.50 1.25 9.20 
WE 0.0123 0.0046 0.0270 1.59 1.28 8.51 1.68 1.38 9.51 

16 

40 
Opt. 0.0165 0.0045 0.0332 1.75 1.61 10.98 1.97 1.93 13.79 
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In the case of 6 and 7 channels, the proposed method outperforms the Wiener estimation 
in terms of both spectral rms error and color difference error, at a significant level of p=0.01. 
In the case of 11 channels, the spectral rms error of the proposed method is lower than that of 
the Wiener estimation, but the color difference error is slightly larger when SNR=∞ and 
SNR=50. This seeming contradiction is due to the nonlinear transform between reflectance 
and CIELAB space, and also the nonlinear operation involved in the color difference formula 
calculation. In the case of 16 channels, the spectral errors of proposed method are similar to or 
even slightly larger than those of the Wiener estimation. The maximum spectral rms errors 
and color difference errors of the proposed method are usually larger than those of the Wiener 
estimation for different channel numbers and noise levels. It is interesting to observe that in 
the case of 11 and 16 channels, both of the spectral and colorimetric errors are lower than 
those of the Wiener estimation when SNR=40. As a whole, it can be conclude from Table 2 
that the superiority of proposed method is obvious when the channel response information is 
not very complete or degraded by noise, or more specifically, when channel number is small 
or SNR is low.  

5.2. Real data 

In the experiment of real data, the actual responses of the imaging system were used. The 
color accuracies of the proposed method and the traditional Wiener estimation were 
investigated using different channel numbers. The noise variances were estimated according 
to Eq. (9). The spectral rms errors and color difference errors are listed in Table 3. It is 
observed that the proposed method outperforms Wiener estimation in the cases of 6 and 7 
channels. For the case of 11 and 16 channels, the color accuracies of the proposed method are 
close to those of the Wiener estimation. This finding is consistent with that in synthetic data 
experiment part. Figure 5 shows typical reconstructed reflectances using the proposed method 
and the Wiener estimation when channel number C=7. It is found that the reflectances 
reconstructed by the proposed adaptive Wiener estimation are more accurate than those of the 
traditional Wiener estimation. 

Table 3. Comparison of the spectral and colorimetric errors of the proposed adaptive Wiener estimation (AWE) and 
the traditional Wiener estimation (WE) when using real data. 

 
 

spectral rms ΔE00* under D65 ΔE00* under F2 channel 

number C 
method 

mean std. max mean std. max mean std. max 
AWE 0.0144 0.0090 0.0488 1.38 0.91 4.79 1.37 0.94 4.68 

6 
WE 0.0186 0.0124 0.0642 1.55 1.15 7.48 1.77 1.33 8.05 

AWE 0.0124 0.0080 0.0451 1.05 0.59 3.37 1.13 0.68 4.52 
7 

WE 0.0148 0.0094 0.0433 1.25 0.70 3.52 1.33 0.95 5.82 
AWE 0.0112 0.0072 0.0379 0.86 0.45 2.67 0.90 0.47 2.64 

11 
WE 0.0112 0.0069 0.0328 0.85 0.50 3.43 0.89 0.51 2.99 

AWE 0.0106 0.0069 0.0356 0.82 0.44 2.74 0.84 0.45 2.70 
16 

WE 0.0100 0.0064 0.0321 0.79 0.48 3.31 0.83 0.47 2.96 
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Fig. 5. Reflectance reconstruction of the proposed adaptive Wiener estimation and traditional 
Wiener estimation when using real data. Channel number C=7. 

 

6. Conclusion 

This paper proposes an improved Wiener estimation method for the reconstruction of spectral 
reflectances without a prior knowledge of the samples being imaged, by the adaptive selection 
of training samples. The performance of the proposed adaptive Wiener estimation is 
investigated for the different channel numbers and SNR levels. Experimental results indicate 
that the proposed method is significantly better than the Wiener estimation when the channel 
number is not large (for example, 6 or 7), while is slightly better than or close to the 
traditional Wiener estimation when channel number 11 or more. The proposed method is of 
potential applications in textile, printing, and other industries. 
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