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methods4,5 performed well in texture and color simula-
tion, they could not describe all the pixels accurately, as
they are based on the statistical information and do not
consider the geometrical factors.

In this study, we attempted to synthesize color tex-
ture images from a given image with high color fidelity
based on the fundamental interaction between light and
the object surfaces. The geometrical information of the
texture surface is firstly recovered based on the dichro-
matic reflection model.6 This was then followed by the
synthesis of new color texture images from the recov-
ered geometry and target solid colors. The texture
strength of the synthesized images was further modi-
fied according to the target colors. As the dichromatic
reflection model is physics-based and holds well for the
description of a large variety of materials,7,8 the high
fidelity of the synthesized texture images can therefore
be reliably achieved. The characterization of the imag-
ing device (color scanner) was performed by recovering
its spectral responsivity. This spectral responsivity can
also enable the direct use of the spectral reflectance
values as a new target color for rendering. The algo-
rithm proposed in this article can be applied to both
gray and color texture images, and is applicable in the
applications of texture simulation and visualization.

In traditional fabric design process, for example, the
color appearance of the designs using different colored
yarns can only be visualized through the processes of
coloration, weaving, or knitting, which are very time
consuming. As the final fabric designs are textured, there
are demands to render solid color onto various different
texture patterns for the visualization of the appearance
of final products. Considering the importance of color
quality in the textile and apparel industries, the pro-
posed algorithm emphasizes the rendering of texture
images that can achieve perceptual similarity to the
actual materials with a high degree of color fidelity. In
addition, the proposed algorithm provides an alterna-
tive texture simulation method for investigating the
relationship between texture patterns and tolerance
threshold of color difference.5
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Introduction
The perception of color and texture is the result of a com-
plicated interaction between illumination and geometry
variation of the object surfaces. Recently, texture synthe-
sis has been extensively studied in the literature of com-
puter graphics and computer vision,1-3 in attempt to
simulate new and realistic texture images from samples.
However, there are still limited works dealing with the
color fidelity in texture synthesis.4,5 Xin and Shen4 in-
vestigated the proportionality of the pixel deviation to
the mean color in each channel and proposed a computa-
tional model for the color mapping on texture images.
Their method performed well on regular and homoge-
neous texture images, but the assumption of the propor-
tionality may fail for textures with high contrast. In the
study of the texture effect on suprathreshold lightness
tolerances, Montag and Berns presented a method of tex-
ture image simulation.5 They first produced a
decorrelated color space (DCS) using singular value de-
composition (SVD), then modified the mean color of the
image, and finally inverted the color transform to gener-
ate new texture images. It was noticed that the DCS pro-
duced using singular value decomposition is image
related, which means that the optimal DCS for the origi-
nal image may not be the optimal for the reproduced
images with other colors. In fact, the spatial color distri-
bution of texture images is attributed to the geometrical
structure of the texture samples. Although the previous
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Algorithm of Color Rendering of Texture Images
The output of a typical color imaging device, such as
color scanner, is a three-band image with red, green, and
blue channels. For simplicity, it is assumed that illumi-
nation is spatially uniform and the indices expressing
spatial coordinates are omitted. Provided that the im-
aging system is linear, the response at pixel position i
by the kth sensor is given by

    V L S R i dk
i

k= ∫ ( ) ( ) ( ; )λ λ λ λ  k = 1…3 (1)

where L(λ) is the light illumination, Sk(λ) is the spec-
tral sensitivity function of the kth sensor, and R(i;λ) is
the reflectance at position i.

According to the dichromatic reflection model,6 the re-
flected light can be decomposed into two components
namely a surface reflection and a body reflection. The
surface reflection occurs at the object surface, and its
spectral composition is approximately the same as that
of the illumination. The body reflection is the result of
the scattering of the light within the pigmented layer
of the object subsurface and the selective absorption of
the light dependent on the material characteristic. It is
further assumed in the dichromatic reflection model that
the surface and the body reflection can be further de-
composed into two independent components, i.e., spec-
tral and geometric ones. Therefore, the reflectance R(i;λ)
can be written as

    R i m i R m i Rb b s s( ; ) ( ) ( ) ( ) ( )λ λ λ≈ +   (2)

where mb(i) and ms(i) are the geometric factor of the
body and the surface reflection at position i, and Rb(λ)
and Rs(λ) are the wavelength composition of the body
and the surface reflectance respectively. As the spec-
tral composition of the surface reflection is the same
as that of the illumination, Rs(λ) is a constant Rs and
Eq. (2) becomes

    R i m i R m i Rb b s s( ; ) ( ) ( ) ( )λ λ≈ + (3)

Substituting Eq. (3) into Eq. (1) yields

    V m i V m i Vk
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k
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where

    V L S R db
k

k b= ∫ ( ) ( ) ( )λ λ λ λ , and    V R L S ds
k

s k= ∫ ( ) ( )λ λ λ  (5)

Equation (4) can be written in the vector form as

      V V Vi
b b s sm i m i= +( ) ( )  (6)

where Vi is the 3 × 1 color vector at pixel i, Vb and Vs is
the 3 × 1 vector of body color Vb

k and surface color Vs
k,

respectively. The body color Vb is closely related to the
characteristic of the material, and Vs is determined by
the given imaging system and the illumination condi-
tion. Let N be the pixel number of the texture image,
the mean color of the image can be calculated as
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where   mb ,   ms is the mean geometrical term of the body
and surface reflection, respectively. As both of Vi and   V
are the linear combination of Vb and Vs, equation 6 and 7
can be combined by deleting the term body color Vb
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Accordingly (αi, βi) is the geometrical coefficient pair
that completely defines the relative geometry of the pixel
i with respect to that of the mean color.

In the case that the original texture image is a color
one, the color vector   V  and Vs are generally not of the
same direction, i.e.,
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As Eq. (8) is over-determined (three channels and two
unknowns), the coefficient pair (αi, βi) can be solved us-
ing the least squares method. Also, the coefficient pair
(αi, βi) holds the properties that
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The color Vs is actually the white point of the imaging
system. It can be directly measured using an ideal white
diffuser. If the white point is not available, Vs can be
approximately assumed to be Vs=[1 1 1]T, where the su-
perscript T denotes vector transpose. In this case, the
algorithm is called the color-color (C-C) method.

In the case that the original texture image is a
grayscale one (that is, k = 1), the geometrical coefficient
pair (αi, βi) can be easily solved as

    
α βi

k
i

k
i

V
V

= =,   0. (12)

Accordingly, the algorithm is called the gray-to-color
(G-C) method in this case.

After the geometrical coefficient pair (αi, βi) is calcu-
lated in either the C-C method or the G-C method, the
color of the pixel i can be synthesized from a target solid
color   U  as

    U U Vi
i i s= +α β (13)

where     U
i  and   U are the color vectors of element   Uk

i

and   Uk , respectively.
It is known that the texture strength for each color

channel is correlated to the lightness of the color. To
simulate this characteristic of the texture images, the
texture strength should be further modified according
to the target color. In this study, the texture strength
was approximately represented by the standard devia-
tion σk of a texture image. For single-colored regular
images with similar texture pattern, σk can be approxi-
mately derived from the mean color   Vk . Figure 1 shows
a typical relationship between the standard deviation
and mean color for texture images of knitted textile fab-
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rics, where the relationship can be fitted by a 2nd-order
polynomial equation with a high correlation coefficient.

After the establishment of the relationship between
the standard deviation and the mean color, the pixel
color of the kth channel can be modified as

    
U U U Uk
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k

k

k
k
i

k'
'

= + −( )σ
σ

(14)

where σk and σ’k are the standard deviation of the kth
channel of the synthesized image before and after tex-
ture strength modification, respectively. It should be
noted that σk is calculated from the image     U

i , and σ’k is
obtained from the 2-order polynomial fitting function.

Characterization of the Imaging System
As mentioned above, the proposed algorithm of color ren-
dering assumes the linearity of the imaging device. How-
ever, the channel outputs of imaging systems, such as
digital cameras and desktop scanners, are normally non-
linear9-11 as shown in Eq. (15):

    ρ λ λ λ λk k k k kF V F L S R d= = ∫( ) ( ( ) ( ) ( ) ) (15)

where Fk is the nonlinear function that transforms the
linear response Vk to its corresponding actual nonlinear
response ρk. The pixel position is omitted in Eq. (15) as
the geometrical variation of the color patches for linear-
ization is negligible. In this study, the texture images were
obtained by scanning textile fabrics with different colors
using an Epson flatbed scanner model GT-10000+.

To examine the nonlinearity of the scanner, the Kodak
Gray Scale was scanned and the average RGB values for
the twenty gray patches were calculated in a centered 40
× 80 window. The spectral reflectance of each gray patch
was measured using the GretagMacbeth Color-Eye 7000A
spectrophotometer. The reverse nonlinear function Fk

-1 is
therefore can be regarded as the monotonically increas-
ing nonlinear curve between the actual response of the
scanner and the average reflectance (×100) of the gray
patches. It was found that the Fk

-1 of the red, green and
blue channels were very similar to one another. In the
application, the Fk

-1 served as a lookup table and the lin-
ear response of the scanner were calculated by linear in-
terpolation and extrapolation.

In order to obtain the spectral responsivity, some con-
straints such as smooth and positivity should be added,
and the solution can be viewed as a quadratic program-
ming problem or a constrained linear least squares
method.10 In this study, the twenty-four color patches
on the GretagMacbeth ColorChecker were used for the
calculation of the spectral responsivity. In order to check
its accuracy and general, twenty-four textile fabrics with
distinct colors were used for testing. The comparison be-
tween the actual and predicted linear responses for these
two target sets are given in Table I. The prediction er-
rors of the linear response of the ColorChecker were very
low. The error of the blue channel was slightly higher
than that of the red and green channels. The prediction
errors of the textile fabrics were also low, which indi-
cated that the calculated spectral responsivity was also
applicable for this color target.

Figure 2 illustrates the scheme of the color rendering
process after the linearization and characterization of
the scanner. The target color for synthesis can either be
in RGB format or reflectance format after scanner char-
acterization. All the actual responses of the original tex-
ture image or the target color were transformed into
their linear counterparts to be used in the algorithm as

Figure 1. Typical relationship between standard deviations
and mean colors.

Figure 2. Schematic of the color rendering process after imaging device characterization.

TABLE I. Comparison of the actual linear responses Vk and
predicted ones     V̂k  using mathematically recovered spectral
responsivity. The error of a color is calculated using

    
V V Vk k k− ×ˆ %,max 100 , where Vk,max is the maximum linear

response of the kth channel of the white patch of
ColorChecker.

ColorChecker Textile fabrics

Red Green Blue Red Green Blue

Mean error (%) 0.826 0.910 1.211 0.690 0.762 1.239
Maximum error (%) 2.128 3.090 4.638 3.053 3.181 4.747

Target color Fk
–1

Fk
–1

Fk
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the geometry recovery and color rendering needed to be
conducted in the linear color space. After the color ren-
dering, the linear response was then reversed into the
nonlinear scanner response with function Fk, and the
texture strength modification was further applied to
produce a color texture image.

Results and Discussion
In the experiment, given a digital image IA of textile
fabric A, we computed a simulated digital image IB of a
target textile fabric B. The mean color     cB  of the target
sample B was used as the target color. We assumed that

    cB  was different to the mean color     cA  of sample A. From
the digital image IA, and the colors     cA  and     cB , we were
able to simulate an image which is perceptually close to
the target scanned image IB.

The textile fabrics of both knitted and woven struc-
tures with different colors were scanned at an appro-
priate image resolution. In the experiment, the texture
patterns of the original images and target images are
approximately the same, as the purpose is to evaluate
similarity of the color and texture appearance between
the synthesized images and the target ones. The coeffi-
cient pair (αi, βi) was calculated from the original im-
ages and the mean colors of the target images were used
for color rendering. The performance of the algorithm
can be evaluated by comparing the synthesized texture
image with the target one. As there is no pixel corre-
spondence for the synthesized images and the target
texture images, the evaluation is conducted using a sta-
tistical approach.

For each pixel in a texture image, its color difference
to the mean color is calculated in the display color space.
The histogram of the color difference is then constructed.
An example of the histograms is shown in Fig. 3. The
statistical distributions of the color difference of two
synthesized images using C-C and G-C method are both
similar to that of the target image. The histogram of
synthesized image using C-C method is closer to the
histogram of the target image than that using G-C
method. This is expected as the information in C-C
method is three dimensional whereas in G-C method is
only one dimensional. Accordingly, the recovered geo-
metrical pair (αi, βi) is accurate for the former.

Let I be the target texture image, I’ be the synthe-
sized image, and Hj(⋅) be the proportion of the jth bin of
the histogram, then the image similarity can be calcu-
lated by the method of histogram intersection12:
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When the texture distribution of the two image, I and
I’, are quite similar, the term p(I, I’) should be appropri-
ate for the assessment of the image similarity in terms
of color fidelity. The more similar the target image is to
the synthesized image, the closer the term p(I, I’) is to 1.

Examples of the synthesized results of knitted and
woven fabric images using the C-C method and the G-C
method are given in Fig. 4. Two other examples are pre-
sented in Fig. 5 to show the rendering effect of texture
images with very dissimilar lightness and colors. The
gray textures in the G-C method were obtained simply
by averaging the three RGB color channels of the origi-
nal images. We found that the synthesis results degrade
when the lightness or colors of the original and target
images are very dissimilar. For these texture images,
the geometrical coefficient pair (αi, βi) may not be accu-
rate enough for color synthesis. In Fig. 5, the synthesis
results using G-C method are slightly better than those

Figure 3. An example of the histograms of color difference
(between the each pixel and the mean) for the target image
and the synthesized images using C-C and G-C methods.

Figure 4. Synthesis results for the texture images of knitted
fabric (top row) and woven fabric (bottom row). Left to right:
original images; synthesized images using C-C method; syn-
thesized images using G-C method; target images.  Supplemen-
tal Material—Figure 4 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.

Figure 5. Synthesis results for the texture images with very
dissimilar lightness (top row) and dissimilar colors (bottom
row) of knitted fabric. Left to right: original images; synthe-
sized images using C-C method; synthesized images using G-
C method; target images. Supplemental Material—Figure 5 can
be found in color on the IS&T website (www.imaging.org) for a
period of no less than two years from the date of publication.
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using C-C method, which may be attributed to the slight
reduction of the noise when using average channel re-
sponse in the G-C method. These unsatisfactory synthe-
sis results for the texture images seems unavoidable for
any method based on data from a real device like a scan-
ner, as the signal-to-noise ratios of some channels are
very low for extremely dark and vivid color images. The
quantization levels are inadequate for channel responses
at the low end, as indicated by the relationship between
standard deviations and channel responses in Fig. 1.
This was also noticed by Montag and Berns, and they
simulated new texture images from original ones with
similar lightness to avoid this limitation.5 The image
similarity measurements using histogram intersection
between the synthesized images and the corresponding
target images are provided in Fig. 6. Both of the C-C
and G-C methods produced satisfactory synthesis re-
sults. The C-C method performs slightly better than the
G-C method for the great majority of texture images ex-
cept the ones with extremely dark and vivid colors. Vi-
sual examination of the color appearance of the
synthesized and the target texture images also indicated
that they were perceptually identical.

Conclusions
An algorithm of color texture rendering with emphasis
on high color fidelity has been presented. The algorithm
consists of three main steps. Firstly, the necessary geo-
metrical information of each pixel is recovered by dichro-
matic reflection model. Secondly, new texture images are
synthesized by combining the geometrical information
and target solid colors. Finally, the texture strength of
the synthesized images is modified to provide high simi-

larity in color and texture perception. The synthesis al-
gorithm can be applied on either gray or color texture
images. This algorithm also takes advantages of the
scanner characterization and new texture images can
also be synthesized from reflectance. The experimental
results verified the effectiveness of the algorithm in
terms of image similarity. We note that, although only
the knitted and woven textile fabrics are used as ex-
amples in this study, it does not imply the proposed al-
gorithm can only be applicable to those materials. In
fact, the dichromatic reflection model can also describe
other materials including plastic and wood. However,
applying the proposed color rendering algorithm to other
materials is beyond the scope of this paper. A limitation
of the proposed algorithm is that the synthesis results
may degrade when the colors of the original and target
images are very dissimilar, which is attributed to the
limitation of the real imaging devices.    
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