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bstract. In multispectral imaging systems, the accuracy of reflec-
ance estimation can be degraded by the nonlinearity in imaging
rocess, which is due to non-Gaussian distribution of the data and
onlinear optoelectronic conversion function of the camera. To deal
ith nonlinearity, we propose to extend camera responses by high-
rder polynomials and reduce the overfitting problem by partial

east-squares (PLS) regression. Experiment shows that, in terms of
oth spectral and colorimetric error metrics, the proposed method
erforms better than Wiener estimation and ordinary polynomial re-
ression, and is similar to polynomial regression with
egularization. © 2010 SPIE and IS&T. �DOI: 10.1117/1.3385782�

Introduction
ecently, high-fidelity color image reproduction has be-
ome increasingly important because of its many potential
pplications in textiles, medicine, digital archives, etc. To
iew objects under various illumination conditions, multi-
pectral imaging has been extensively studied to estimate
pectral reflectance of object surfaces.1–7 Multispectral im-
ges are usually acquired by trichromatic or monochrome
ameras, accompanied by a set of color filters. The imaging
rocess is often modeled by a linear system when the num-
er of imaging channels is large. In recovery of spectral
eflectance, Wiener estimation is deduced under the condi-
ion that the data conform to normal distribution.8 It works
airly well when the linearity condition is satisfied, and
ecomes a standard technique. However, it is likely that
easured data are not in accordance to the normal

istribution,2,3 and the optoelectronic conversion function
OECF� of the camera is nonlinear.9 Nonlinearity usually
egrades the estimation accuracy of linear methods. Adap-
ive methods, which use local statistics instead of global
nes, provide feasible solutions for improving accuracy.2,4

owever, as adaptive methods usually need to recalculate
he transform between responses and reflectance,4 they are
omputationally expensive and hence unsuitable for time-
ritical applications. An alternative way is to introduce non-
inear variables such as high-order polynomials. Hong,
uo, and Rhodes10 applied ordinary polynomial regression

o predict colorimetric stimulus values from three-channel
amera responses. The same technique has also been
dopted in multispectral imaging.5 However, the extension
f polynomial responses causes overfitting and collinearity
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problems when the number of imaging channels is large.
Heikkinen et al.6 introduced regularized polynomial mod-
eling methods and a more general regularization framework
for robust reflectance estimation.

We propose a global method for spectral estimation
based on polynomial extension of camera responses and
partial least-squares �PLS� regression.11,12 The PLS is
implemented in an iterative manner; its dimension �or num-
ber of PLS components� is determined by the spectral error
distribution. The accuracy of the PLS method is compared
with Wiener estimation and also polynomial regressions
solved by ordinary least squares �OLS� and regularized
least squares �RLS�.

2 Previous Methods
Suppose that the continuous visible spectrum is uniformly
sampled at N �usually N=31� discrete wavelengths, and the
number of imaging channels is C=16. Let F� · � be the
OECF of camera, r�RN�1 be the reflectance of imaged
object surface, and M�RC�N be the spectral responsivity
of the imaging system, then camera response u�RC�1 is
computed as

u = F�Mr + n� , �1�

where n�RC�1 denotes noise. When the camera behaves
linearly, F�x�=x; otherwise it can be represented by high-
order polynomials.9

By ignoring F� · �, the linear method tries to find a trans-
form matrix W�RN�C such that the estimate of reflec-
tance can be computed as

r̂ = Wu . �2�

W can be calculated by Wiener estimation as4,7

WWE = KrM
T�MKrM

T + Kn�−1, �3�

where superscript T denotes the matrix transpose, and Kr
�RN�N and Kn�RC�C are the autocorrelation matrices of
reflectance r and noise n, respectively.

W can also be solved under the least-squares criterion.
Let K be the number of training samples. We can construct
reflectance matrix R= �r�1� ,r�2� , . . . ,r�K���RN�K and re-
sponse matrix U= �u�1� ,u�2� , . . . ,u�K���RC�K, and then
calculate the transform matrix as1,10

W = RU+, �4�

where superscript � denotes the matrix pseudoinverse. The
pseudoinverse operator in Eq. �4� and hereafter is numeri-
cally solved by singular value decomposition.13

Nonlinearity can degrade the performance of the linear
reflectance estimation methods. It is natural to define a two-
order polynomial response vector ũ�RJ�1 to deal with the
nonlinearity due to OECF and non-Gaussian data distribu-
tion:

u = �1,u1, . . . ,uc,u1
2,u1u2, . . . ,u1uc,u2

2,u2u3, . . . ,u2uc, . . . ,

uc−1uc,uc
2�T, �5�

where uc�1�c�C� is the c’th element of u. As C=16, ũ
has J=153 elements. By defining the polynomial response
Apr–Jun 2010/Vol. 19(2)1
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atrix as Ũ= �ũ�1� , ũ�2� , . . . , ũ�K���RJ�K, the transform
atrix W can be solved under the OLS criterion as

OLS = RŨ+, �6�

nd reflectance is predicted as r̂=WOLSũ.
Alternatively, W can also be computed by introducing a

egularization �or penalization� term as

RLS = �RŨT��ŨŨT + �I�−1, �7�

here � is a regularization parameter and I denotes the
dentity matrix. The overfitting problem can be diminished
y the regularization term.6

Partial Least-Squares-Based Reflectance
Estimation

s mentioned, the overfitting problem can occur in polyno-
ial regression solved by OLS when the number of param-

ters in the mathematical model is greater than the number
f dimensions of data variation. The overfitting problem is
robably related to the increasing colinearity between the
xtended polynomial responses. In this regard, we propose
o deal with it by dimensionality reduction using the PLS
echnique.11

The polynomial response matrix Ũ can be decomposed
nto a score matrix T�RK�L and a loading matrix P
RJ�L, with L being the number of PLS components, as

˜ T = TPT + E , �8�

here E�RK�J is a residual matrix. Similarity, R can also
e decomposed into a score matrix D�RK�L and a loading
atrix Q�RN�L as

T = DQT + F , �9�

here F�RK�N is a residual matrix.
The goal of PLS is to extract the common structure be-

ween ŨT and RT by searching a projection such that the
ovariance between the score matrices T and D is maxi-
ized. In matrix form, this relationship is written as

= TB , �10�

here B�RL�L is the diagonal regression matrix.
The PLS algorithm is carried out in an iterative

anner.12 To obtain an orthogonal score matrix T, a weight
atrix G�RJ�L is introduced in the iterative procedure.
et j be the iteration index, and g, t, q, and d be the j’th
olumn vectors of matrices G, T, Q, and D, respectively.
efore starting the iteration, let E=UT and F=RT. Matrices
and F are then column centered and normalized so that

ach variable has zero mean and unit variance. Let j=1 and
be any column of F, then compute Eqs. �11�–�14� itera-

ively:

=
ETd

�ETd�
, �11�

= Eg , �12�
ournal of Electronic Imaging 020501-
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q =
FTt

�FTt�
, �13�

d = Fq , �14�

where �·� denotes the Euclidean norm. If t has not con-
verged, return to Eq. �11�, otherwise compute the value of
b, which is the j’th diagonal element of matrix B, as b
=dTt / tTt, and compute the factor loading, which is the j’th
column vector of P, as p=ETt / tTt.

The residual matrices E and F needed for the next itera-
tion are calculated as

E = E − tpT, �15�

and

F = F − btqT. �16�

Note that Eqs. �15� and �16� remove the variance asso-
ciated with the obtained score and loading vectors before
the next iteration. If j�L, let j= j+1 and continue the it-
eration starting from Eq. �11�; otherwise, stop the iteration
and compute the PLS transform12

WPLS
T = G�PTG�−1�TTT�−1TTRT, �17�

based on which reflectance can be estimated as r̂=WPLSũ.
As L controls the number of iterations, its value is influ-

ential to PLS. If L=min�J ,K�, E and F become zeros and
PLS reduces to OLS; otherwise, if L�min�J ,K�, the colin-

earity of matrix Ũ is reduced.12 In this work, L is deter-
mined according to the spectral accuracy of the reflectance
estimation, as is discussed in the following section.

4 Experiment
In the multispectral imaging system, we used a mono-
chrome digital camera �model Cool-SNAP HQ2, Roper
Scientific Incorporated, Ottobrunn, Germany� with 14-bit
digitization and 16 narrowband filters �10 nm half-width,
product of Andover Company, Salem, New Hampshire�
that uniformly cover the visible spectrum ranging from
400 to 700 nm. The response of the camera deviates from
linearity by less than 1%.14 As it is difficult to accurately
acquire OECF at such a nonlinear level by imaging a num-
ber of gray samples, we consider it appropriate to treat it by
extending the polynomial camera responses, as discussed in
previous sections. We used 414 textile Pantone patches as
the color targets, with half for training and half for testing.
The surfaces of these patches contain weak textures and
some gloss reflection, and hence are not ideal diffusers. The
reflectance data of these patches were measured by the
spectrophotometer GretagMacBeth �Grand Rapids, Michi-
gan� 7000A; the 16-channel multispectral images were ac-
quired by the imaging system. To reduce imaging noise,
three sequential images were captured and averaged for the
same scene, and the responses of each color sample were
averaged in spatial areas with approximately 60
�60 pixels. The transform between camera responses and
reflectance was calculated from the training set and evalu-
ated on the test set. The estimation accuracy was examined
by spectral root-mean-square �rms�1 error and CIEDE2000
Apr–Jun 2010/Vol. 19(2)2
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olor difference15 error under CIE standard illuminants. We
ried different randomization strategies for selecting train-
ng and test samples, and found that the estimation accura-
ies were quite close. Hence we only present the experi-
ental results of the case where the odd numbered samples
ere used for training and the rest for testing.
The performance of the PLS method is compared with

he OLS and RLS methods. For the RLS method, we set the
egularization parameter �=0.001, which approximately
roduces the minimum spectral rms error. For the PLS
ethod, it is found that the spectral error is not very sensi-

ive to the number of PLS component L. The suitable value
f L is in the range from 40 to 60, and we adopted L=40
or computational efficiency. Table 1 gives the spectral and
olorimetric errors of the PLS method, compared with the
iener estimation, OLS, and RLS methods. It is clear that

n terms of both colorimetric and spectral error metrics, the
roposed method outperforms the Wiener estimation and
LS methods while being close to the RLS method. This is

xpected, as Wiener estimation cannot account for nonlin-
arity, and the OLS method has the inherent overfitting
roblem. The RLS method exhibits improved estimation
ccuracy through the introduction of the regularization
erm. By removing the common variance in the response
nd reflectance matrices, PLS also yields good accuracy.

Due to the iterative nature of PLS, the computation time
f the training procedure �calculation of WPLS� is approxi-
ately proportional to L. As the transform matrix WPLS is

alculated before reflectance estimation, this computation
ime does not affect algorithm efficiency. The computation
ime of the test procedure is determined by the size of the

atrix WPLS and is irrelevant to L. The PLS method was
mplemented under the MATLAB® environment and run on
PC with an Intel Core 2 CPU at 1.86 GHz and with 3-GB
emory. For a multispectral image with 1392
1040 pixels, the PLS method costs about 9 s and can be
uch faster if programmed using C language. This indi-

ates that the computational efficiency of the PLS method
s acceptable to many practical applications.

Conclusions
e propose a method for estimating reflectance from mul-

ichannel camera responses based on high-order polynomi-
ls and partial least squares. The proposed method is ca-

Table 1 Spectral rms errors and CIEDE2000 ��E00�

ethod

Spectral rms

Mean Standard Max

iener estimation 0.0117 0.0065 0.0495

LS 0.0134 0.0140 0.0999

LS 0.0079 0.0051 0.0445

LS �proposed� 0.0076 0.0043 0.0301
ournal of Electronic Imaging 020501-
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pable of dealing with nonlinearity in the imaging process.
The appropriate number of PLS components is determined
based on spectral rms error distribution. In terms of spectral
and colorimetric error metrics, the proposed technique is
superior to Wiener estimation and polynomial regression
solved by ordinary least squares, and is close to polynomial
regression solved by regularized least squares.
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�E00 under D65 �E00 under F2

Standard Max Mean Standard Max
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1.26 8.75 1.34 1.43 10.33
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0.69 4.85 0.80 0.60 3.93
errors
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0.92

0.87
Apr–Jun 2010/Vol. 19(2)3

1.175.193.51. Terms of Use:  http://spiedl.org/terms

http://dx.doi.org/10.1364/OE.15.005531
http://dx.doi.org/10.1364/JOSAA.20.001261
http://dx.doi.org/10.1364/AO.41.004840
http://dx.doi.org/10.1117/12.586315
http://dx.doi.org/10.1364/JOSAA.24.002673
http://dx.doi.org/10.1364/JOSAA.24.002673
http://dx.doi.org/10.1109/TIP.2006.877069
http://dx.doi.org/10.1002/col.20386
http://dx.doi.org/10.1002/1520-6378(200102)26:1<76::AID-COL8>3.0.CO;2-3
http://dx.doi.org/10.1002/1520-6378(200102)26:1<76::AID-COL8>3.0.CO;2-3
http://dx.doi.org/10.1016/0003-2670(86)80028-9
http://dx.doi.org/10.1002/col.1049

