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Abstract. Fusion of texture and color is to simulate color texture
images that are perceptually very close to the actual ones. There
are three computational models, i.e., gray-to-color mapping (GCM),
color-to-color mapping (CCM), and dichromatic-based (DICH) mod-
els. The CCM model is extended to three methods, namely, CCM-
RGB, CCM-LCH, and CCM-l��, when it is applied in different color
spaces. The DICH model contains two methods: DICH-GC and
DICH-CC, considering the original image can be either gray scale or
color. The color fidelity of these six methods is comparatively inves-
tigated in terms of image similarity between simulated and target
images. © 2005 SPIE and IS&T. �DOI: 10.1117/1.1990007�

1 Introduction
Texture and color are two important properties of images.
The description of texture and color has been widely stud-
ied in the domain of image segmentation and texture
synthesis.1,2 Texture image segmentation considers the
separation of a different object area by analyzing the statis-
tical distribution of texture and color,1 while texture syn-
thesis deals with the generation of new representative tex-
ture samples from the underlying stochastic process of
original ones.2 In the literature of image processing, the
pseudocoloring technique is always used to render gray-
scale images for visualization.3 However, color fidelity is
usually not the objective of the texture synthesis and
pseudocoloring techniques.

This paper studies the fusion of texture and color for the
simulation of new texture images with special consider-
ation of color fidelity. More precisely, given an original
image and a solid target color, the objective is to simulate a
new color texture image that is a close replica of the target
image so that the final style of the textured object can be
visualized before it is actually produced. For example, in
the textile and apparel industry, as the final products such
as colored fabrics are textured, there are demands for the
mapping of solid colors to various texture patterns for vi-
sualization and for color quality control.

Currently, several computational models have been re-
ported for the fusion of texture and color information. Xin
and Shen investigated the interchannel relationship among
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the spatial distribution of the red, green, and blue �RGB�
channels of texture images, and then proposed a method for
the color mapping of texture images.4 The numerical and
psychophysical experiment results indicated that the model
performs well in terms of color difference. Combined with
image segmentation, the color mapping method could be
applied in the recoloring of textile printing designs.5

Botchko et al. analyzed the relationship between the mean
spectral reflectance and the standard deviation of natural
objects and proposed parametric methods for the virtual
recoloring of texture images.6,7 Based on the dichromatic
reflection model introduced by Shafer,8 Shen and Xin fur-
ther developed a method for the rendering of texture im-
ages with high color accuracy.9 Reinhard et al. proposed a
color transfer method using a recently developed l�� color
space,10 and the method works well in changing the color
distribution of natural scene images. Montag and Berns
presented a method to simulate textile color texture images
in the CIELCH color space using singular value decompo-
sition �SVD� technique.11 It is noted that the methods pro-
posed in Refs. 4–7, 10, and 11 are all based on the statis-
tical analysis of the texture and color distribution in texture
images, while the texture rendering method in Ref. 9 is
based on the physical interaction between texture surfaces
and incident light.

In this paper, we first investigate the channel correlation
among different channels of texture images and discuss the
interaction based on the dichromatic reflection model.8 Dif-
ferent computational models for texture and color fusion
are then presented. Finally, the color accuracy of these
models is comparatively investigated in terms of image
similarity.

2 Statistical Analysis and Physical Model for
Texture Images

The texture images used in this paper were collected by
imaging textile fabrics. The textile fabrics were dyed using
different colored dyestuffs, and the different texture pat-
terns are due to different woven methods, such as plain and
twill woven. In this paper, the textile fabrics used were all
single colored; multicolored fabrics were not considered.

For a typical three-channel RGB imaging device such as
a digital camera or a scanner, the response un

p of channel n

at pixel p is given as
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un
p =� l���r��,p�sn��� d� n = 1, 2, 3 or RGB, �1�

where � denotes wavelength, l��� is the spectral power
distribution of the illumination, sn��� is the spectral sensi-
tivity function of the n’th sensor, and r�� , p� is the spectral
reflectance of object at position p. Note that Eq. �1� sup-
poses that the outputs of the imaging device are linear with
the flux of incoming light intensity. The luminance uY

P at
pixel p can be simply calculated by averaging the pixel
responses in RGB channels:

uY
P = �u1

p + u2
p + u3

p�/3. �2�

If we let ūn be the mean value of channel n, the pixel
deviation �un

p, is

�um
p = un

p − ūn, �3�

and can be written in the vector form as

�up = up − ū , �4�

where �up= ��u1
p ,�u2

p ,�u3
p�T ,up= �u1

p ,u2
p ,u3

p�T, and ū
= �ū1 , ū2 , ū3�T, with superscript T representing the vector
transpose. Similarly, the pixel deviation �uY

P of channel Y
can be computed as

�uY
P = uY

P − ūY , �5�

where ūY is the mean value of channel Y.
For color images, the pixel responses of RGB channels

are not independent, but rather are highly correlative.9 The
channel correlation of color texture image is the basis of the
statistical models for texture and color fusion, especially
when only 1-D spatial distribution �for example, channel Y�
is known a priori. The correlation coefficient cn between

Fig. 1 Color texture image �left� and the pixel
channels and Y channel �right�. The correlatio
respect to Y channel are 0.985, 0.915, and 0.98
channel n and Y can be calculated according to
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cn =
�p

�un
p � �p

�uY
P

��p
��un

p�2 � �p
��uY

P�2�1/2 . �6�

A typical color texture image and its pixel deviation distri-
butions of RGB channels with respect to Y channel are
given in Fig. 1. The angles of the mean axis of the point
clouds define the degrees of correlation, with 0 and 90 deg
indicating uncorrelated data. The correlation coefficient of
the blue channel, 0.988, is the highest, followed by that of
the red channel, 0.985. The correlation coefficient of the
green channel, 0.915, is the lowest. These observations
clearly indicate the existence of high channel correlation of
texture images.

It is of interest to investigate the hue distribution of
single-colored texture images. For pixel p, the hue can be
calculated as12

Hp = arctan � �3�u2
p − u1

p�
2u3

p − u1
p − u2

p	 . �7�

Figure 2 shows a histogram of the texture image in Fig. 1.
It is found that despite the heavy textures, the hue is con-

ion relationship between red, green, and blue
ficients of red, green, and blue channels with
pectively.

Fig. 2 Histogram of hue of the texture image in Fig. 1. The hue is
deviat
n coef
8, res
scaled to the range of 0 to 255.
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strained in a very limited range and thus can be considered
to be approximately constant. This also explains why hue is
always used in color image segmentation.12

In addition to the statistical analysis of texture images, it
is also interesting to discuss the physical interaction be-
tween object surface and lighting. According to the dichro-
matic reflection model,8 the reflected light can be decom-
posed into two components, i.e., surface reflection and
body reflection. The surface reflection occurs at the object
surface, and its spectral composition is approximately the
same as that of the illumination. The body reflection is the
result of the scattering of the light within the pigmented
layer of the object subsurface, and the selective absorption
of the light dependent on the material characteristic. Ac-
cording to the neutral interface reflection �NIR� model,13

the reflectance r�� , p� is represented as

r��,p� = mb
prb��� + ms

prs, �8�

where mb
p and ms

p are the geometric factors of the body and
surface reflections at pixel p , rb��� is the wavelength com-
position of the body reflectance, and rs is the constant sur-
face reflectance independent of wavelength. Substituting
Eq. �8� into Eq. �1� yields

un
p = mb

p� l���rb���sn��� d� + ms
p� l���sn���rs d�

= mb
pub,n + ms

pIn, �9�

where ub,n and In are the channel responses of body and
surface reflections, respectively. Equation �9� can be writ-
ten in the vector form as

up = mb
pub + ms

pI �10�

where ub is the column vector of element ub,n, and I is the
column vector of element In. As the coefficient md

p and ms
p

describe the geometry of pixel p, Eq. �10� can be used to
colorize textured samples or 3-D objects in a single
image.9,14

The dichromatic reflection model can be applied to a
variety of materials including plastic, wood, ceramic, and
also the textile fabrics used in this study. However, the
dichromatic reflection model may fail to describe other ma-
terials with nonneutral surface reflections such as coated
glasses, iridescent surfaces, and some other textile fabrics
including silk and satin.

3 Models for Fusion of Texture and Color
In this section, several computational models for fusion of
texture and color are discussed. For simplicity and clarity,
existing methods for texture and color fusion are classified
into three models: gray-to-color mapping �GCM� model,
color-to-color mapping �CCM� model, and dichromatic-
based �DICH� model. As the CCM model can be applied in
different color spaces, three methods, namely, CCM-RGB,
CCM-l��, and CCM-LCH, are further discussed. For the
DICH model, two methods, namely, DICH-GC and DICH-
CC, are introduced for gray-scale and color original im-

ages, respectively.
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3.1 GCM Model
The GCM model deals with the mapping of color to gray-
scale images to produce desired color images. The essence
of this model is to derive the 3-D spatial information
�RGB� from the only known 1-D information �Y channel�.
This derivation is possible because of the high channel cor-
relation of texture images discussed above. If the desired
target color is v̄, and the standard deviations of channels n
and Y are �n and �Y, respectively, then the color vGCM,p of
the reproduced image at pixel p can be calculated as4

vGCM,p = v̄ + D�uY
P �11�

where �uY
P= ��uY

P ,�uY
P ,�uY

P�T, and D is a 3 � 3 diagonal
matrix diag ��1

1 ,�2
1 ,�3

1�, with �n
1=�n /�Y. In the virtual col-

oring method, parameters are adopted to modify the stan-
dard deviation �n of each channel to obtain pleasing visual
effects.6 Since the purpose of this paper is to investigate the
color fidelity of the model, the parameter of the virtual
coloring method is not considered. When �n is unknown a
priori, it can be assumed that �n=�Y, and D becomes an
identity matrix diag �1,1,1�. In this case, the appearance of
the simulated image is usually smoother than that of the
actual target one.

According to Eq. �7�, the hue of pixel p for the simu-
lated image using GCM model becomes

Hp = arctan � �3��̄2 + �2
1�uY

P − �̄1 − �1
1�uY

P�
2��̄3 + �3

1�uY
P� − ��̄1 + �1

1�uY
P� − ��̄2 + �2

1�uY
P�	

= arctan
 �3���̄2 − �̄1� + ��2
1 − �1

1��uY
P�

�2�̄3 − �̄1 − �̄2� + �2�3
1 − �1

1 − �2
1��uY

P� . �12�

It is obvious that when �1��2��3, the hue of each pixel
p is a constant absolutely decided by the target color v̄. For
real texture images, when �n does not differ much with
each other, the variation of hue is very small, which is in
agreement with the observation in Sec. 2.

3.2 CCM Model
Unlike the GCM model, the original image of the CCM
model is colored, and thus it is a 3-D-to-3-D color-mapping
problem. In the RGB color space, if the pixel deviation is
unchanged in color mapping, the new color at pixel p can
be simply calculated by subtracting mean color ū and add-
ing target color v̄ as follows:

vCCM-RGB,p = v̄ + up − ū = v̄ + �up. �13�

However, as the investigation of texture image found that
the pixel deviation is actually related to the mean color, it is
more appropriate to calculate vCCM-RGB,p as5

vCCM-RGB,p = v̄ + f�v̄ + �up� , �14�

where function f�·� is defined on each pixel position and
performs linear interpolation between �u1

p ,u2
p ,u3

p� and
��u1

p ,�u2
p ,�u3

p�. The plot of function f�·� is shown in Fig. 3,
in which u1

p�u2
p�u3

p is assumed. To not introduce extrapo-
lation error, the value of function f�·� is clipped to �u1

p and
p p p
�u3 in the ranges of �0, u1� and �u3, 255�, respectively.
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In addition to the RGB space, the CCM model can also
be applied10,11 in other color spaces such as l�� and
CIELCH. The l�� space was first proposed by Ruderman
et al. based on the principle component analysis �PCA� of
many natural scene images.15 In the transform, the RGB
space is first linearly transformed to LMS space, then to a
logarithmic space, and finally is rotated to produce l��
color space. The detailed transformation can be found in
Refs. 10 and 15. An advantage of the l�� space is that the
channel correlation was eliminated, and therefore the modi-
fication of the response in one channel would minimally
affect those in other channels. In the l�� space, the new
l�� color vCCM-l��,p of pixel p can be written as10

vCCM-l��,p = �l̄�,�̄�,�̄��T + �lp,�p,�p�T − �l̄,�̄,�̄�T, �15�

where �l̄ , �̄ , �̄�T is the mean color of the original image,
�lp ,�p ,�p�T is the color of pixel p in the image, and

�l̄� , �̄� , �̄��T is the desired target color. Note that the stan-
dard deviation of each channel is not considered in Eq.
�15�. The last step of the CCM-l�� method is to transform
the new l�� color back to RGB space.

In the study of the texture effect on suprathreshold light-
ness tolerances, Montag and Berns presented a method of
texture image simulation in CIELCH color space.11 They
first rotate the CIELCH color space using a 3 � 3 matrix
based on PCA to produce a decorrelated space, and then
modified the mean color of the image, and finally inverted
the color transform to generate new texture images. When
the purpose is to simulate a new image using the same
texture and different color, the PCA is no longer required.11

Therefore, similar to Eq. �15�, the new color vCCM-LCH,p of
pixel p in CIELCH space can be calculated as follows:

vCCM-LCH,p = �L̄�,C̄�, h̄��T + �Lp,Cp,hp�T − �L̄,C̄, h̄�T, �16�

where �L̄ , C̄ , h̄�T is the mean color of the original image,
�Lp ,Cp ,hp�T is the color of pixel p in the original image,

and �L̄� , C̄� , h̄��T is the desired target color in CIELCH
space. Similar to the CCM-l�� method, vCCM-LCH,p should

Fig. 3 Function f�·� for the CCM model in RGB color space.
also be converted back to RGB space.
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3.3 DICH Model
The GCM and CCM models are both based on the statisti-
cal distribution of texture images. Considering the spatial
color distribution of texture images is attributed to the geo-
metrical structures of the texture samples, Shen and Xin
proposed a texture rendering method based on the dichro-
matic reflection model.9 According to Eq. �10�, the channel
responses up can be decomposed into two body color ub
and surface color I. If N denotes the pixel number of a
texture image, the mean color ū can be written as

ū =
1

N
�

p

up =
1

N�
p

mb
p�ub +

1

N�
p

ms
p�I

= m̄bub + m̄sI , �17�

where m̄b and m̄s are the mean geometric coefficients of the
body and surface colors, respectively. The surface color I is
actually the white point of the imaging system, and can be
obtained by imaging an ideal white diffuser. For images
where we lack knowledge of the imaging condition, for
example, those downloaded from the Internet, we suppose
the camera is white balanced to the light source and thus
I= �255,255,255�T.

We can combine Eqs. �10� and �17� by eliminating term
ub as

up = apū + bpI , �18�

where

ap =
mb

p

m̄b

, bp =
ms

pm̄b − mb
pm̄s

m̄b

. �19�

From Eq. �18�, the relationship between up and ū is com-
pletely specified by the geometric coefficient pair �ap ,bp�.

In the case where the original texture image is of a color
other than the white point I, the geometric coefficients pair
�ap ,bp� in Eq. �18� can be solved by the least-squares
method. The new color vDICH-CC,p can then be calculated as

vDICH-CC,p = apv̄ + bpI . �20�

In the case where the original image is a gray-scale image,
that is, only 1-D information of the Y channel is available,
the coefficients could be solved by neglecting surface re-
flection as

ap =
uY

P

ūY

, bp = 0, �21�

and the calculation of new color can be simplified as

vDICH-GC,p =
uY

P

ūY

v̄ . �22�

From Eqs. �20� and �22�, it is obvious that vDICH-GC,p is
a special case of vDICH-CC,p. Note that Eq. �22� will produce
larger errors than Eq. �20� in simulating a texture image
with unneglectable surface reflections.

Without loss of generality, the image can be normalized
with respect to the white point I. Then, for the DICH

model, the hue of pixel p can be calculated as

Jul–Sep 2005/Vol. 14(3)4
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Hp = arctan� �3�ap�̄2 + bp255 − ap�̄1 − bp255�
2�ap�̄3 + bp255� − �ap�̄1 + bp255� − �ap�̄2 + bp255�

	
= arctan� �3��̄2 − �̄1�

2�̄3 − �̄1 − �̄2
	 . �23�

It is found that the hue is a constant for every pixel p,
which is the same as in the GCM model when �n=�Y �see
Eq. �12��.

4 Experiments and Discussion
To study the color fidelity of the three computational mod-
els for texture and color fusion, textile fabrics with different
texture patterns were used. The texture images were ob-
tained by scanning these fabrics using an Epson scanner
model GT10000+ at a resolution of 72 dpi. Some examples
of the texture images are shown in Fig. 4.

We further define texture strength as the standard devia-
tion of the texture image in this study. It is known that
texture strength is related to the mean colors of the texture
images.9 For example, for certain materials, the texture
strength may be small in the dark intensity range, while it is
large in the light intensity range. Therefore, it is worthwhile
to investigate the color fidelity of these methods in two
cases. The first case assumes that the standard deviation of
the target image is unknown a priori, and thus no adjust-
ment of the texture strength is applied. The second case
assumes that the standard deviation of the target image is
known, and thus the texture strength of the simulated image
can be adjusted as follows.

If the standard deviations of the n’th channel of the re-
produced and target images are �n

N and �n
T, respectively, the

final new color �n
p,T after texture strength adjustment can be

calculated in the RGB color space as

�n
p,T = �̄n +

�n
T

�n
N��n

p − �̄n� . �24�

The performances of the models can be evaluated by com-
paring the simulated texture image with the target image.
As there is no pixel correspondence for the simulated and
target texture images, the evaluation is conducted using a

Fig. 4 Examples of the texture images used in t
texture patterns and different colors.
statistical approach.
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The similarity of the simulated and the target images
must be evaluated in perceptually uniform color spaces
such as CIELAB and CIELUV. In the textile and apparel
industry, the CIELAB space is generally used. In the ex-
periment, texture images were displayed on a calibrated
and characterized SONY Tinitron 21-in. CRT display. The
characterization of the display was carried out using the
gain, offset, and gamma �GOG� model,16 and the RGB val-
ues of the texture images can be transformed to the corre-
sponding CIELAB values according to the model. For each
pixel, its color difference 	Eab

* to the mean color is calcu-
lated in the CIELAB space. The histogram of the color
difference was then constructed, in which each bin denotes
an interval of 0.5 unit of 	Eab

* .
Assume that BT is the target texture image, BS is the

simulated image, and Hj�·� is the pixel count of the j’th bin
of the histogram, then the image similarity ratio s�BS ,BT�
between these two images can be calculated by histogram
intersection17 as

s�BT,BS� =

�
j=1

M

min �Hj�BT�,Hj�BS��

�
j=1

M

Hj�BT�

, �25�

where M is the number of bins of the histogram. When the
texture distributions of the two images BT and BS are quite
similar, the term s�BS ,BT� should be appropriate for the
assessment of the image similarity in terms of color fidelity.
The more similar the target image is to the simulated im-
age, the closer is the image similarity ratio s�BS ,BT� is to 1.

Figure 5 gives the simulation results for the computa-
tional models for texture and color fusion without texture
strength adjustment. The original and target images are of
the same texture pattern, and the mean color of the target
image is used as target color. It is found that all of the
fusion results are perceptually very close to the target.

In the experiment, 40 different texture images were ran-
domly selected to compare the color fidelity of the compu-
tational models in terms of image similarity according to

dy. The images of the two rows are of the same
he stu
Eq. �25�. The mean image similarity ratio and the standard

Jul–Sep 2005/Vol. 14(3)5
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deviation between target and simulated images are shown
in Fig. 6. It is found that, when no texture strength adjust-
ment is applied, the DICH-CC method performs the best,
followed by the CCM-RGB and CCM-LCH methods. The
similarity ratios of the GCM and DICH-GC methods are
very close, but both are lower than those of the DICH-CC,
CCM-RGB, and CCM-LCH methods. It is surprising that

Fig. 6 Image similarity ratio �±1 standard deviat

Fig. 5 Simulated results using different method
CCM-LCH, �f� CCM-l��, �g� DICH-CC, and �h�
texture and color fusion methods, without �top� and w

Journal of Electronic Imaging 033003-
the CCM-l�� method performs the worst. It was also found
in the experiments that the CCM-l�� method sometimes
produces false colors in shadow areas of texture images.
The reason may be that the l�� space is derived from natu-
ral scene images other than textile texture images used in
this study.15 In the case of texture strength adjustment, the

tween simulated and target images for different

riginal, �b� target, �c� GCM, �d� CCM-RGB, �e�
C.
ion� be
s: �a� o
ith �bottom� texture strength adjustment.
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color fidelity of each method is greatly improved. The im-
age similarity of the CCM-LCH method is the highest at
0.95, followed by the DICH-CC method, which is 0.93.
The third is the CCM-l�� method, at about 0.90. The simi-
larity ratios of the GCM, CCM-RGB, and DICH-GC meth-
ods are all about 0.85.

From the two plots in Fig. 6, the variation of similarity
ratios is much smaller after applying texture strength ad-
justment. By holistic consideration of these two cases, it
can be concluded that the CCM-LCH and DICH-CC meth-
ods are more appropriate for texture and color fusion when
the original image is color, while either the GCM or the
DICH-GC method can be used for texture and color fusion
when the original image is of gray scale.

5 Conclusion
We studied the performance of different computational
models for texture and color fusion in terms of color fidel-
ity. As the texture strength is related to the mean color of
the image, two cases—with or without texture strength
adjustment—were introduced. The color fidelity of these
texture and color fusion methods was studied in terms of
image similarity between the simulated and target images.
When the texture strength is not applied, the DICH-CC
method is the best, followed by the CCM-RGB and CCM-
LCH methods. When the texture strength is applied, the
image similarity ratio for each method is significantly im-
proved. The color accuracy of the CCM-LCH method is the
highest, followed by the DICH-CC and CCM-l�� methods.
The performance of the GCM and DICH-GC methods are
acceptable considering there is only 1-D spatial information
available in the original gray-scale image.

The physical samples used in this study are limited to
the certain textile fabrics. In future research, it is of our
interest to evaluate these different computational models on
other textile materials including pile and wool fabrics. In
addition, some texture recognition and classification meth-
ods in the image processing literature will also be consid-
ered for the evaluation of these texture and color fusion
models.
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