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Abstract. The interrelationships among spatial distribution in the
red, green, and blue channels of texture images of differently woven
textile fabrics are investigated. A computational model for color
mapping is developed based on the channel proportionality found in
the investigation. The computational model developed has two
modes: gray-to-color mapping (GCM) and color-to-color mapping
(CCM) that deal with different images. For the GCM mode, the spa-
tial distribution of luminance is known. The algorithm needs to de-
duce data in three channels for a color image from 1-D spatial dis-
tribution of luminance. Whereas in the CCM mode, the information
for each of the three channels is known. Numerical and psycho-
physical experiments are carried out to evaluate the accuracy of the
color mapping algorithm quantitatively. Satisfactory color accuracy
of the mapped images was obtained according to the results of both
numerical calculation and visual experiment. © 2003 SPIE and IS&T.

for the mapping of solid colors to various texture patterns,
so that visualization of the final products can be achieved.
In these applications and many others, it is very important
to simulate texture images with high color accuracy. For
textiles and clothing industries in particular, it is generally
accepted that pass and fail tolerance for colored goods is
about 1.0 to 1.5 CIELAB color difference units. If a
method of color mapping cannot achieve this magnitude of
color accuracy, it will affect the final displayed samples and
in turn will affect color quality judgment.

In the literature of texture image analysis, many re-
searches have been conducted in the domain of texture
mapping and synthesis® Texture mapping deals with ren-

[DOI: 10.1117/1.1604395] dering textures to surfaces of 3-D computer graphics to

produce natural and realistic effeéts.Texture synthesis
1 Introduction generates a new instance of a representative texture sample

Color mapping on texture images deals with reproducing afrom the underlying stochastic process of an original tex-
texture color image accurately so that it is perceptually {Ure- The appearance of the generated texture sample
close to the original one. Color mapping on texture imagesSh°U|d be very close to the original one. Campisi, Neri, and
should provide an effective way for color texture image Scarandproposed a method to reproduce a texture percep-
coding. It should also provide a way for simulating physical tually close to a given prototype, according to the assump-
surfaces with color texture information with high color fi- tion that the human visual system is preattentively unable
delity on a pixel-wise scale. Color mapping with high fi- to dlstlr_lgt{lsh.textures havmg thg same f|rst-.an_d s_econd-
delity is much needed in systems such as computer-aided)rder distributions, but different higher-order dlstrlbutlcﬁns:
design for textile fabrics, texture simulation, and visualiza- Heeger and Bergen described a method for synthesizing
tion. For example, in a traditional fabric design process in Stochastic texture images that match the texture appearance
which physical samples are produced, the effect of the de-of @ given sample using a set of statistical properties.
sign using yarns with different colors can only be visual- These works emphasized the perceptual similarity of tex-
ized through the coloration of yarns, followed by weaving t!,lral effects compared tp the original one. Texture informa-
or knitting those yarns into fabrics. This is a very time- tion of the reproduced image, on the other hand, may be
consuming process. If more colors are going to be used indifferent from that of the original one. However, in those
the design, more coloration and weaving processes need t¥orks, the color accuracy for the reproduced images was
be carried out. With the technique of color mapping on not co_n5|dered._lr_1 the colorimetric characterization of low
texture images, one can visualize the final style of the fab-and high-end digital cameras, Hong, Han, and q_-p“?'

rics before they are actually produckth textile coloration ~ Posed an approach for on-screen texture visualization by
and color quality control along the supply chain of the col- assuming that the pixels in the reproduced textile fabric
ored goods, the visualization of solid colors on display de- image differed only in luminance and not in chromaticity
vices has become a routine process for many companies.coordinates.

As the final fabric product is textured, there are demands 10 address the problem of color fidelity in the color-
mapping process, this study emphasized synthesizing a

color image that is perceptually close to the physical
sample, with a high degree of color accuracy. A corre-
%ponding computational model for color mapping on tex-
tural images was developed. Using this model, the demands
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Fig. 1 Color-mapping process adopted in this study with emphasis on color fidelity.

from textile and garment industries toward color accuracy where
in texture image simulations can be dealt with. The map-

ping algorithm was driven by a global-to-local analysis of H=(X,Y,2)T, 2
the input textural images, which deals with image data
pixel by pixel. The process of image color mapping is R=(R,G,B,RG,RB,GB,R%,G2B%RGB1)". ©)

shown in Fig. 1. In this color-mapping process, the color

and texture features of the image were studied, and theThe superscript in Egs.(2) and(3) stands for vector trans-
parameters of the algorithm were fine tuned under the guid-pose, and\M is the 3x11 transform matrix that can be re-
ance of numerical color different evaluation. The images in solved by the method of least square fittiigColor stan-

this study were prepared by scanning the textile fabricsdards such as the Macbeth Color Checker Chart and 1T8
with 16 different texture patterns. Each texture pattern wascharts can be used for characterization purposes. To achieve
dyed using five different colors. The most elementary color better characterization results, the nonlinear relationship
space, thdRGB space, was used in the procedure of color between the devicRGB values and their corresponding
mapping, since it directly corresponds to the input/output XY Zvalues of gray patches on charts was investigated. The
signal of imaging device5The numerical evaluation of the nonlinear nature could be adjusted using a 1-D look-up
computational model is carried in the"a*b* (CIELAB)  table, and then the linearizéRiIGB values were applied in
color space, recommended by the International Commis-the polynomial regression instead of the measuRe®B
sion on Illuminatiord in 1976, which is reasonably uniform gjyesé10

and has been widely used in color difference calculation. After the characterization of the imaging device, the

. . R GB values of the pixels were ready to be transformed to
2 Development of the Color-Mapping Algorithm the correspondiniY Z values. TheXY Z values of a pixel
Texture images were scanned in using an Epson GT-

10000+ flatbed color image scanner. The physical samples

were 16 differently woven cotton fabrics. Samples of each

into five colors: green, orange, purple, pink, and turquoise
blue. All together 80 fabric samples were scanned in a reso i3
lution that gave approximately equal visual appearances tc
those of the physical samples when viewed under normals:
viewing distances of about 25 to 30 cm. The green texture:
image samples with different woven patterns are given in
Fig. 2.

2.1 Analysis of the Chromaticity Coordinates of
Texture Images

As digital imaging devices can only produgsGB digital v
counts for the texture samples, to study the chromaticity
coordinates of a texture image, the imaging devices should
be characterized to obtain the device-independent colori-
metric values. In the domain of color imaging technology, |
the method of device characterization has been extensively
studied'® and it was suggested that the most straightfor-
ward RGB to XY Z tristimulus transformation was high-
order polynomial regression. Mapping froRIGB to XY Z
using 11 terms can be represented by @g.

H=MR, (1) Fig. 2 The 16 different texture images used in this study.
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Fig. 3 The distribution of chromaticity coordinates for two different
texture images: (a) is for plain woven patterns and (b) is for twill
woven patterns.

can be converted to their corresponding luminahicand
chromaticity coordinateg andy following the CIE colo-
rimetry, where

X=X/(X+Y+2), (4)
and
y=Y/(X+Y+2). (5)

Therefore, the vectorx(y,Y) can be used to represent the
color of pixels in a texture image. The distribution of the
chromaticity coordinates of the pixels of two different tex-
ture images of textile fabric samples were plotted in Figs.
3(a) and 3b) as examples. As seen from Fig(b3 the

distribution of chromaticity coordinates of the pixels differs

significantly. Therefore the assumption of constant chroma-

ticity coordinates adopted by Horet al® has only very
limited use to provide accurate color mapping for textile
fabrics.

Accuracy of the characterization of the imaging device

is highly dependent on the hardware device. Current scan-
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Fig. 4 Channel correlation coefficient of one of the texture images
studied: (a) the texture image and (b) the correlation coefficient of
the green and blue channels.

imaging device, each of thg,(\) of the red, green, and
blue channels has a distribution across a certain range of
wavelength, with some degree of overlap between each
other. Sinces,(\) is fixed and dependent on the character-
istics of the imaging devicem,(p) is mainly determined

by the factorL(\;p). Due to the property of statistical
similarity of the textile textures, the light reflected from the
texture surface will be confined to a certain range.

The signals produced in the filter array of the imaging
devices are not independent but highly correlative, as dis-
cussed by other researché$3The correlation coefficient
between two channels can be calculated by &jf?

ner technology may be unable to support the requirement of

textile and clothing applications at an affordable price. In

this study, the accuracy of the characterization of an Epson

GT-10000+ using the method illustrated was 2.7 CIELAB
color difference units using Macbeth Color Checker Chart,

and was considered inadequate in achieving the color accus,,(p)= >,
racy requirement. Nevertheless, since the distribution of the

chromaticity coordinates for pixels in Figsi@ and 3b) is

S1a(p)
= , 7
AP s P S p T "
where
Spp)= X [my(p")—m[my(p’)—my,], (8)
p’ eN(p)
Su(p)= > [my(p)—my]? (9)
p’ eN(p)
[my(p’)—m,]?, (10

p"eN(p)

a relative term, it is not affected by the absolute accuracy ofthe m; andm, are the mean values of channels 1 and 2,

the scanner characterization.

2.2 Analysis of Channel Distribution

The RGB color space directly corresponds to the output of
imaging devices. For a particular pixgl the RGB signal
could be defined as follows:

mn(p)=f L(N;p)Sa(N)dA, (6)

whereL (\;p) refers to the spectral distribution function of
the light entering the imaging device at a pixgls,(\)

respectively, andN(p) denotes the neighbor domain pf
As the purpose here is to investigate the local channel cor-
relations,r 15(p) was calculated in a3 window around
pixel p. In Fig. 4, the channel correlation coefficients for
the green and blue channels of the texture image shown
were ploted. The correlation coefficients are very high in all
pixel positions, ranging from 0.791 to 0.996, with an aver-
age value of 0.885. The investigation of the 80 texture im-
ages of the textile fabrics confirmed that the average chan-
nel correlation coefficients were higher than 0.83, between
any two channels. These results indicated highly correlative
properties between channels.

Knowing that there are high channel correlations in the

refers to the spectral sensitivity of the appropriate sensor.texture images studied, the interchannel spatial distribution
andn denotes a red, green, or blue channel. For a typicalin pixel scale was further studied. The luminantfr each
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Fig. 5 Histograms of the red, green, blue, and Y channels: (a) im-
age 1, (b) histograms of image 1, (c) image 2, and (d) histograms of . . . .
image 2. mode is deducing 3-D channel information of red, green,

and blue channels from the existing 1-D spatial distribution

of brightness or luminance of the original image. The two
pixel was calculated according to the Federal Communica-different modes are discussed in more detail in the follow-
tions CommissioFCC) RGB color spac& ing sections.

Y=0.29R+0.58G+0.1148. (12

2.3.1 GCM mode
The typical histograms of channels red, green, blue, andin the GCM mode, only the mean colan, and spatial
luminanceY of two texture images are plotted in Fig. 5. It " gistribution of luminanceY are available. All the other in-

can be seen that the histogram of each channel has similaformation needed in the algorithm is global or statistical,
shapes(only differing in height and widthfor the same  gptained from the histogram analysis.

texture image, which is due to the similarity in the texture  Aq discussed in Sec. 2 Am,(p) of different channels
spatial distribution and the high channel correlation coeffi- are approximately proportional to each other. Based on this

cients. . ' h ;
e relationship, a model of color mapping in the GCM mode is
To study the spatial distribution of the color components ., defingd: pping

more locally, the deviation of pixg to the mean value in
channeln is calculated as the following: m8(p)=im, + (M) - Amy(p) + 8%(p), (19
AM(P)=M(P) =M. i where the superscri@ denotes the GCM modé®(m,) is
wherem, is the mean value of channels red, green, blue, orthe proportionality function, an@ﬁ(p) is the error factor
luminanceY. It was found that the relationships between between the reproduced image and the original image in
Am, of any two different channels were linearly propor- channeln. The goal of color mapping is to decide the ap-
tional. A typical example of the relationship between propriate form of functiorf®(m,), so thataﬁ(p) is mini-
AmgeenandAmy for an image studied is plotted in Fig. 6.  mized.

In Fig. 5 for the green and blue colored images, the spatial As the shapes of the histograms of the red, green, and
distribution of channel red is more coarse or noisier thanblue channels are quite similar, we can simply use the
that of the green or blue channels, the width of histogram of width of the histogranw,, to represent that histogram. The
the red channel is also wider. When investigating the his- histogram widthw,, here is defined as the minimum dis-
tograms of the 80 texture images, the same results wergance between the low valug and high valueT,, that
found, which indicated that whem, was small, the devia-  covers a 98% area of the whole histogram of chamnel

tion of the spatial distribution in channalwas relatively

large. W,=min| T, —T4l, (14)

2.3 Two Modes of Color Mapping
There are two modes of color mapping according to the

whereT, and Ty satisfy

different original images under processing. These are gray- Tu 255
to-color mapping (GCM) and color-to-color mapping > h,(x) / >, h,(x)=98%, (15
(CCM). The difference between these two modes is that thex=T. x=0

spatial distribution available is 3-D in the CCM mode and
1-D in the GCM mode. The important part of the GCM andh,(x) is the distribution of the histogram of chanmel
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Fig. 7 The plot of the proportionality function f¢(x).

Considering thatv, may differ widely depending on the
properties of the texture in different images, the relative
width with respect to the width of the luminance channel
wy is calculated:
Wh=w, /wy . (16)
According to the proportionality relationship found, the
function f¢(x) can be defined using the global information
of the histograms and the mean valug:

¢

wi o=x=m,
wi-wy - _
———— (X—Mmy) +W; m;<xXs=my,
G m;—my
f (X): Wl—Wl , (17)
2~ W3 — —
———— (X—m3) + w3 my,<X=mMj
m,—m
[ w3 My<x<255

wherem; <m,<ms. In the range fronm, to ms, the func-
tion f6(x) is proportional and linear, while between 0 and
m,, my and 255, it is clipped tovi andws3, respectively.
The shape of ©(x) is plotted in Fig. 7.

Since in the GCM mode the only available information
is the mean values and spatial distributionnef(p), the
parameters of ©(x) must also be deduced fromy(p).
Theoretically, for different texture images, the parameters
of f(x) should also be different for the accurate descrip-
tion of a particular texture. However, considering the com-
plicated statistical properties of the texture imdgesd the
applicability of the algorithm, an empirical form d¢f(x)
was thought to be more appropriate for this study, provided
that the color accuracy for the textile application could be
met.

2.3.2 CCM mode

pixel-wise scale, not a global one from the histogram analy-
sis. We modify Eq(13) accordingly and obtained the fol-
lowing equation:

My (p)=my+fS(my;p) +85(p), (18)
where the superscrif@ denotes the CCM mode. Note that
the proportionality termf®(my)-Amy(p) in Eq. (13) be-
comes f¢(m,;p), which means that the proportionality
function is directly mapped for every pixel. Hence the func-
tion f€ becomes:

fC(x;p)
Amy(p)
Amy(p)—Amy(p)
my(p) —ma(p)
Amy(p) —Amg(p)
my(p) —ms(p)
Amg(p)

osx=my(p)

[x—my(p)]+Amy(p)  My(P)<x=My(p)

[x—mg(p)]+Amg(p)  Ma(p)<x<mz(p)

m;(p)<x<255
(19

wherem; (p) <m,(p)<mg(p). The shape of°(m,;p) is
similar to that off¢(m,,) in the GCM mode, despite that it
now contains the spatial positiom of the image. In the
CCM mode, the error facto.b‘ﬁ(p) in all pixels is 0 when
applying the algorithm with the mean color valog of the
original image.

3 Experimental Analysis of the Accuracy of the
Models for Color Mapping

Color mappings based on the prior two modes were per-
formed. Both numerical and psychophysical evaluations
were undertaken to investigate the effectiveness of the
computational model proposed. In an attempt to establish
the generic form of (x), all of the 80 fabric samples with

16 different texture patterns were used. The details of those
samples and the method of digitizing the samples can be
found in Sec. 2. After a fine tuning of parameters based on
the investigation of different images, the most suitable em-
pirical equation for the GCM mode was obtained as the
following:

1.2 0<x=64
0.4
fO(x)= ~ 1og(Xx 64 +1.2 64<x<192 . (20)
0.8 192<x<255

Using the scanner characterization procedure discussed ear-
lier, the RGB values of pixels could be converted to
device-independenXY Z values. TheseXY Z values can
then be converted to CIELAB for the calculation of the
color differenceAE, ,, between two sets of CIELAB coor-
dinates (¥ ,a} ,b}) and (L3 ,a% ,b3)*:

The CCM mode here can be considered as a special case of

the approach. Unlike the GCM mode, the original image in
the CCM mode is colored, which means that the 3-D spatial
distributions of the original image are known. In the CCM
mode, the proportionality functiof® is determined on a

AELab=[(AL*)2+(Aa*) 2+ (Ab*)?]2

(21)

where AL*=L3—L}, Aa*=aj—aj, and Ab*=b}
—b7.
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Fig. 8 An example of the color mapping results using GCM and
CCM modes: (a) original image, (b) texture information of the origi-
nal image, (c) color-mapping result with the mean color of the origi-
nal image in the GCM mode, and (d) color-mapping result with a
green solid color in the CCM mode.

In this study, both numerical and psychophysical experi-

ments were employed to evaluate the accuracy of the com

putational model of color mapping. Detailed descriptions
are given in the following.

3.1 Numerical Evaluation

sent the perceived overall color difference. Some method of
weighting was used in a previous wdfkHowever, in this
study, the images used are all texture samples with regular
patterns and with no obvious local variance, such as bright
or high contrast regions, etc. The pixel-by-pixel color dif-
ference calculation is therefore quite reliable.

3.2 Psychophysical Evaluation

While the numerical experiment mainly evaluates pixel-

wise accuracy during color mapping, the psychophysical
experiment attempts to evaluate the visual difference on
color and texture appearance that may exist between the
color-mapped texture images and physical samples. The
fabric sample was attached on a gray plane standing in a

Verivide viewing booth at a illuminating/viewing geometry

of 80/0 deg to the normal of the sample plane. A D65
simulator of the viewing booth was properly adjusted to
give similar luminance to that of the monitor white point. A

texture image was displayed in the center of a 21-in. Sony

In both GCM and CCM modes, texture images can be Trinitron monitor screen adjacent to the viewing booth. The
mapped with solid color. Figure 8 shows an example of physical sizes of the physical and displayed samples were
color mapping using the texture information of the original identical. The gray background of the monitor was adjusted
image. In the CCM mode, the reproduced and original im- to be equal to that of the gray background supporting the
ages are exactly the same when of the original image  physical samples. A Photo Research spectroradiometer

are applied, and thus theE, ., for every pixel is 0, as can model PR704 was used to measure the colors of both fabric
been deduced from the proportionality function of ELp).

and displayed samples. The procedure of the visual assess-

Thus the numerical experiment was conducted in the casement consisted of four steps.

that the luminance channé&tontaining only texture infor-
mation is mapped with the mean color of the original im-
age in the GCM mode. Although the purpose here is to
evaluate the performance of the computational model, this
technique is also very useful in color texture image coding,
since it provides a way to simulate a color texture image,
knowing only the texture information and the average color
value. Plotted in Fig. 9 are the average pixel-wisg, .,
values between the original and reproduced images in the
GCM mode. The averag®E, ,, for all 80 samples is 1.29.

It was reported that the threshold for detecting the color
difference of a pair of solid color samples is around
1.0AE_ 4 .'° Nevertheless, in the case of color with tex-
ture, one can hardly perceive the difference between the
original image and the reproduced one, even if the mean
color difference is 1.29, as shown in this study. This result
may be attributable to the parametric effect of the
texturel®1”On the other hand, the pixel-by-pixel color dif-

ference calculation has shortcomings, as it may not repre-
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Fig. 9 The average pixel-wise AE, ,, between the original and re-
produced image in the GCM mode.
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1. Measuring of the fabric samples in the viewing booth

to obtain theXY Zvalues. We characterized the moni-
tor using a gain-offset-gamm@OG) modell® and
then converted theXYZ values into the monitor
RGB values by the GOG model.

. Mapping the solid color to the same texture pattern as

the fabric sample using the method developed in this
study.

. Measuring the texture image generated on the screen

using the spectroradiometer, and calculating the color
difference between the texture image and correspond-
ing fabric sample.

. A panel of ten observers with normal color vision

tested by the congenital color vision deficiencies

test® was invited to evaluate the matching using a
seven-point scale. Grade 1 was the worst color
matching and grade 7 was the perfect color matching
between the texture image on the monitor and the
fabric sample in the viewing booth.

The averageAE, ., in step (1) between the displayed
solid colors predicted from the GOG model and the physi-
cal sample is 1.10. After mapping the solid color to the
texture images, thAE, ,, was calculated in step 3. These
color differences and the visual assessment ratings in step 4
for the 80 samples were plotted in Figs.(d0and 1Qb),
respectively. The averagek, 5, between the color-mapped
texture images and the physical samples is 1.12. This result
clearly indicates that color mapping does not introduce ad-
ditional errors in spectroradiometric measurement, and
hence the color-mapping algorithm produces accurate re-
sults. It seems that the GOG model still has some errors in
predicting displayed color. If this error can be reduced, the
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Fig. 10 Physical and psychophysical evaluation of the CCM mode
results: (a) AE, ,p of the spectroradiometric measurement, and (b)
grade rating of the visual assessment.

spectroradiometric measurement results for the color-

mapped texture image can be further improved. The aver-

age grade of the visual assessment is aroundnbabli to 7

is established. A computational model of color mapping on
texture images is then established. The color accuracy of
the model developed was tested quantitatively using both
objective and subjective evaluation methods. Two mapping
modes, GCM and CCM, are discussed. The difference be-
tween the two modes is due to knowledge of the spatio-
chromatic information of the original image. The contents
of the proportionality functions are different for the two
modes. Both GCM and CCM perform well in this study.
However, GCM deals with mapping from one to three di-
mensions, while CCM deals with mapping from three di-
mensions to three dimensions. CCM is considered to be
more reliable when the noise is low. The psychophysical
evaluation conducted also shows that the reproduced im-
ages satisfactorily match the original samples, which fur-
ther verifies the effectiveness of the model proposed. Al-
though this study concerns only solid-color textures, it can
be extended to multicolor texture images once these images
are properly segmented. As the computational model of
color mapping is based on the proportionality relationship
between channels, it performs well for regular textures,
such as textile fabrics. But for textures where the propor-
tionality basis does not hold, such as angular textures with
high contrast, the model may fail to produce satisfactory
results. In this study, it is also found that due to interreflec-
tion within physical texture samples, the color also has an
impact on the texture appearances of the scanned images.
For example, the pixel variatiofor texture contragtof
bright color is usually weaker than that of dark color. This
is, however, slightly different from the visual perception.
This problem is not addressed in the study, and it is sug-
gested that this effect may be considered in future work.
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