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Computational model for color mapping on
texture images
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Abstract. The interrelationships among spatial distribution in the
red, green, and blue channels of texture images of differently woven
textile fabrics are investigated. A computational model for color
mapping is developed based on the channel proportionality found in
the investigation. The computational model developed has two
modes: gray-to-color mapping (GCM) and color-to-color mapping
(CCM) that deal with different images. For the GCM mode, the spa-
tial distribution of luminance is known. The algorithm needs to de-
duce data in three channels for a color image from 1-D spatial dis-
tribution of luminance. Whereas in the CCM mode, the information
for each of the three channels is known. Numerical and psycho-
physical experiments are carried out to evaluate the accuracy of the
color mapping algorithm quantitatively. Satisfactory color accuracy
of the mapped images was obtained according to the results of both
numerical calculation and visual experiment. © 2003 SPIE and IS&T.
[DOI: 10.1117/1.1604395]

1 Introduction

Color mapping on texture images deals with reproducin
texture color image accurately so that it is perceptua
close to the original one. Color mapping on texture imag
should provide an effective way for color texture ima
coding. It should also provide a way for simulating physic
surfaces with color texture information with high color fi
delity on a pixel-wise scale. Color mapping with high
delity is much needed in systems such as computer-a
design for textile fabrics, texture simulation, and visualiz
tion. For example, in a traditional fabric design process
which physical samples are produced, the effect of the
sign using yarns with different colors can only be visu
ized through the coloration of yarns, followed by weavi
or knitting those yarns into fabrics. This is a very tim
consuming process. If more colors are going to be use
the design, more coloration and weaving processes nee
be carried out. With the technique of color mapping
texture images, one can visualize the final style of the f
rics before they are actually produced.1 In textile coloration
and color quality control along the supply chain of the c
ored goods, the visualization of solid colors on display d
vices has become a routine process for many compan2

As the final fabric product is textured, there are dema
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for the mapping of solid colors to various texture patter
so that visualization of the final products can be achiev
In these applications and many others, it is very import
to simulate texture images with high color accuracy. F
textiles and clothing industries in particular, it is genera
accepted that pass and fail tolerance for colored good
about 1.0 to 1.5 CIELAB color difference units. If
method of color mapping cannot achieve this magnitude
color accuracy, it will affect the final displayed samples a
in turn will affect color quality judgment.

In the literature of texture image analysis, many r
searches have been conducted in the domain of tex
mapping and synthesis.3–8 Texture mapping deals with ren
dering textures to surfaces of 3-D computer graphics
produce natural and realistic effects.3,4 Texture synthesis
generates a new instance of a representative texture sa
from the underlying stochastic process of an original te
ture. The appearance of the generated texture sam
should be very close to the original one. Campisi, Neri, a
Scarano5 proposed a method to reproduce a texture perc
tually close to a given prototype, according to the assum
tion that the human visual system is preattentively una
to distinguish textures having the same first- and seco
order distributions, but different higher-order distribution6

Heeger and Bergen described a method for synthesi
stochastic texture images that match the texture appear
of a given sample using a set of statistical propertie7

These works emphasized the perceptual similarity of t
tural effects compared to the original one. Texture inform
tion of the reproduced image, on the other hand, may
different from that of the original one. However, in thos
works, the color accuracy for the reproduced images w
not considered. In the colorimetric characterization of lo
and high-end digital cameras, Hong, Han, and Lou8 pro-
posed an approach for on-screen texture visualization
assuming that the pixels in the reproduced textile fab
image differed only in luminance and not in chromatici
coordinates.

To address the problem of color fidelity in the colo
mapping process, this study emphasized synthesizin
color image that is perceptually close to the physi
sample, with a high degree of color accuracy. A cor
sponding computational model for color mapping on te
tural images was developed. Using this model, the dema

nd
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Fig. 1 Color-mapping process adopted in this study with emphasis on color fidelity.
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from textile and garment industries toward color accura
in texture image simulations can be dealt with. The m
ping algorithm was driven by a global-to-local analysis
the input textural images, which deals with image d
pixel by pixel. The process of image color mapping
shown in Fig. 1. In this color-mapping process, the co
and texture features of the image were studied, and
parameters of the algorithm were fine tuned under the g
ance of numerical color different evaluation. The images
this study were prepared by scanning the textile fab
with 16 different texture patterns. Each texture pattern w
dyed using five different colors. The most elementary co
space, theRGB space, was used in the procedure of co
mapping, since it directly corresponds to the input/out
signal of imaging devices.1 The numerical evaluation of th
computational model is carried in theL* a* b* ~CIELAB!
color space, recommended by the International Comm
sion on Illumination9 in 1976, which is reasonably uniform
and has been widely used in color difference calculatio1

2 Development of the Color-Mapping Algorithm

Texture images were scanned in using an Epson
100001 flatbed color image scanner. The physical samp
were 16 differently woven cotton fabrics. Samples of ea
of the woven patterns were dyed using reactive dyest
into five colors: green, orange, purple, pink, and turquo
blue. All together 80 fabric samples were scanned in a re
lution that gave approximately equal visual appearance
those of the physical samples when viewed under nor
viewing distances of about 25 to 30 cm. The green text
image samples with different woven patterns are given
Fig. 2.

2.1 Analysis of the Chromaticity Coordinates of
Texture Images

As digital imaging devices can only produceRGB digital
counts for the texture samples, to study the chromati
coordinates of a texture image, the imaging devices sho
be characterized to obtain the device-independent co
metric values. In the domain of color imaging technolog
the method of device characterization has been extensi
studied,10 and it was suggested that the most straightf
ward RGB to XYZ tristimulus transformation was high
order polynomial regression. Mapping fromRGB to XYZ
using 11 terms can be represented by Eq.~1!.

H5MR , ~1!
f Electronic Imaging / October 2003 / Vol. 12(4)
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where

H5~X,Y,Z!T, ~2!

R5~R,G,B,RG,RB,GB,R2,G2,B2,RGB,1!T. ~3!

The superscriptT in Eqs.~2! and~3! stands for vector trans-
pose, andM is the 3311 transform matrix that can be re
solved by the method of least square fitting.11 Color stan-
dards such as the Macbeth Color Checker Chart and
charts can be used for characterization purposes. To ach
better characterization results, the nonlinear relations
between the deviceRGB values and their correspondin
XYZvalues of gray patches on charts was investigated.
nonlinear nature could be adjusted using a 1-D look-
table, and then the linearizedRGB values were applied in
the polynomial regression instead of the measuredRGB
values.8,10

After the characterization of the imaging device, th
RGB values of the pixels were ready to be transformed
the correspondingXYZ values. TheXYZ values of a pixel

Fig. 2 The 16 different texture images used in this study.
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Computational model for color mapping . . .
can be converted to their corresponding luminanceY and
chromaticity coordinatesx and y following the CIE colo-
rimetry, where

x5X/~X1Y1Z!, ~4!

and

y5Y/~X1Y1Z!. ~5!

Therefore, the vector (x,y,Y) can be used to represent th
color of pixels in a texture image. The distribution of th
chromaticity coordinates of the pixels of two different te
ture images of textile fabric samples were plotted in Fi
3~a! and 3~b! as examples. As seen from Fig. 3~b!, the
distribution of chromaticity coordinates of the pixels diffe
significantly. Therefore the assumption of constant chrom
ticity coordinates adopted by Honget al.8 has only very
limited use to provide accurate color mapping for text
fabrics.

Accuracy of the characterization of the imaging devi
is highly dependent on the hardware device. Current sc
ner technology may be unable to support the requiremen
textile and clothing applications at an affordable price.
this study, the accuracy of the characterization of an Ep
GT-100001 using the method illustrated was 2.7 CIELA
color difference units using Macbeth Color Checker Cha
and was considered inadequate in achieving the color a
racy requirement. Nevertheless, since the distribution of
chromaticity coordinates for pixels in Figs. 3~a! and 3~b! is
a relative term, it is not affected by the absolute accuracy
the scanner characterization.

2.2 Analysis of Channel Distribution

TheRGB color space directly corresponds to the output
imaging devices. For a particular pixelp, the RGB signal
could be defined as follows:1

mn~p!5E L~l;p!sn~l!dl, ~6!

whereL(l;p) refers to the spectral distribution function o
the light entering the imaging device at a pixelp, sn(l)
refers to the spectral sensitivity of the appropriate sen
and n denotes a red, green, or blue channel. For a typ

Fig. 3 The distribution of chromaticity coordinates for two different
texture images: (a) is for plain woven patterns and (b) is for twill
woven patterns.
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imaging device, each of thesn(l) of the red, green, and
blue channels has a distribution across a certain rang
wavelength, with some degree of overlap between e
other. Sincesn(l) is fixed and dependent on the characte
istics of the imaging device,mn(p) is mainly determined
by the factorL(l;p). Due to the property of statistica
similarity of the textile textures, the light reflected from th
texture surface will be confined to a certain range.

The signals produced in the filter array of the imagin
devices are not independent but highly correlative, as d
cussed by other researchers.12,13The correlation coefficient
between two channels can be calculated by Eq.~7!12

r 12~p!5
S12~p!

@S11~p!•S22~p!#1/2
, ~7!

where

S12~p!5 (
p8PN~p!

@m1~p8!2m̄1#@m2~p8!2m̄2#, ~8!

S11~p!5 (
p8PN~p!

@m1~p8!2m̄1#2, ~9!

S22~p!5 (
p8PN~p!

@m2~p8!2m̄2#2, ~10!

the m̄1 and m̄2 are the mean values of channels 1 and
respectively, andN(p) denotes the neighbor domain ofp.
As the purpose here is to investigate the local channel c
relations,r 12(p) was calculated in a 333 window around
pixel p. In Fig. 4, the channel correlation coefficients fo
the green and blue channels of the texture image sho
were ploted. The correlation coefficients are very high in
pixel positions, ranging from 0.791 to 0.996, with an ave
age value of 0.885. The investigation of the 80 texture i
ages of the textile fabrics confirmed that the average ch
nel correlation coefficients were higher than 0.83, betwe
any two channels. These results indicated highly correla
properties between channels.

Knowing that there are high channel correlations in t
texture images studied, the interchannel spatial distribut
in pixel scale was further studied. The luminanceY for each

Fig. 4 Channel correlation coefficient of one of the texture images
studied: (a) the texture image and (b) the correlation coefficient of
the green and blue channels.
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 699
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pixel was calculated according to the Federal Communi
tions Commission~FCC! RGB color space1:

Y50.299R10.587G10.114B. ~11!

The typical histograms of channels red, green, blue,
luminanceY of two texture images are plotted in Fig. 5.
can be seen that the histogram of each channel has sim
shapes~only differing in height and width! for the same
texture image, which is due to the similarity in the textu
spatial distribution and the high channel correlation coe
cients.

To study the spatial distribution of the color componen
more locally, the deviation of pixelp to the mean value in
channeln is calculated as the following:

Dmn~p!5mn~p!2m̄n , ~12!

wherem̄n is the mean value of channels red, green, blue
luminanceY. It was found that the relationships betwee
Dmn of any two different channels were linearly propo
tional. A typical example of the relationship betwee
DmgreenandDmY for an image studied is plotted in Fig. 6
In Fig. 5 for the green and blue colored images, the spa
distribution of channel red is more coarse or noisier th
that of the green or blue channels, the width of histogram
the red channel is also wider. When investigating the h
tograms of the 80 texture images, the same results w
found, which indicated that whenm̄n was small, the devia-
tion of the spatial distribution in channeln was relatively
large.

2.3 Two Modes of Color Mapping

There are two modes of color mapping according to
different original images under processing. These are g
to-color mapping ~GCM! and color-to-color mapping
~CCM!. The difference between these two modes is that
spatial distribution available is 3-D in the CCM mode an
1-D in the GCM mode. The important part of the GC

Fig. 5 Histograms of the red, green, blue, and Y channels: (a) im-
age 1, (b) histograms of image 1, (c) image 2, and (d) histograms of
image 2.
700 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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mode is deducing 3-D channel information of red, gre
and blue channels from the existing 1-D spatial distribut
of brightness or luminance of the original image. The tw
different modes are discussed in more detail in the follo
ing sections.

2.3.1 GCM mode

In the GCM mode, only the mean colorm̄n and spatial
distribution of luminanceY are available. All the other in-
formation needed in the algorithm is global or statistic
obtained from the histogram analysis.

As discussed in Sec. 2.2,Dmn(p) of different channels
are approximately proportional to each other. Based on
relationship, a model of color mapping in the GCM mode
then defined:

mn
G~p!5m̄n1 f G~m̄n!•DmY~p!1dn

G~p!, ~13!

where the superscriptG denotes the GCM mode,f G(m̄n) is
the proportionality function, anddn

G(p) is the error factor
between the reproduced image and the original image
channeln. The goal of color mapping is to decide the a
propriate form of functionf G(m̄n), so thatdn

G(p) is mini-
mized.

As the shapes of the histograms of the red, green,
blue channels are quite similar, we can simply use
width of the histogramwn to represent that histogram. Th
histogram widthwn here is defined as the minimum dis
tance between the low valueTL and high valueTH that
covers a 98% area of the whole histogram of channeln:

wn5minuTL2THu, ~14!

whereTL andTH satisfy

(
x5TL

TH

hn~x!Y (
x50

255

hn~x!598%, ~15!

andhn(x) is the distribution of the histogram of channeln.

Fig. 6 The linear proportionality relationship between DmY and
Dmgreen .
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Computational model for color mapping . . .
Considering thatwn may differ widely depending on the
properties of the texture in different images, the relat
width with respect to the width of the luminance chann
wY is calculated:

wn
15wn /wY . ~16!

According to the proportionality relationship found, th
function f G(x) can be defined using the global informatio
of the histograms and the mean valuem̄n :

f G~x!55
w1

1 0<x<m̄1

w1
12w2

1

m̄12m̄2
~x2m̄2!1w2

1 m̄1,x<m̄2

w2
12w3

1

m̄22m̄3
~x2m̄3!1w3

1 m̄2,x<m̄3

w3
1 m̄3,x<255

, ~17!

wherem̄1,m̄2,m̄3 . In the range fromm̄1 to m̄3 , the func-
tion f G(x) is proportional and linear, while between 0 an
m̄1 , m̄3 and 255, it is clipped tow1

1 andw3
1, respectively.

The shape off G(x) is plotted in Fig. 7.
Since in the GCM mode the only available informatio

is the mean values and spatial distribution ofmY(p), the
parameters off G(x) must also be deduced frommY(p).
Theoretically, for different texture images, the paramet
of f G(x) should also be different for the accurate descr
tion of a particular texture. However, considering the co
plicated statistical properties of the texture images14 and the
applicability of the algorithm, an empirical form off G(x)
was thought to be more appropriate for this study, provid
that the color accuracy for the textile application could
met.

2.3.2 CCM mode

The CCM mode here can be considered as a special ca
the approach. Unlike the GCM mode, the original image
the CCM mode is colored, which means that the 3-D spa
distributions of the original image are known. In the CC
mode, the proportionality functionf C is determined on a

Fig. 7 The plot of the proportionality function fG(x).
of

l

pixel-wise scale, not a global one from the histogram ana
sis. We modify Eq.~13! accordingly and obtained the fol
lowing equation:

mn
C~p!5m̄n1 f C~m̄n ;p!1dn

C~p!, ~18!

where the superscriptC denotes the CCM mode. Note tha
the proportionality termf G(m̄n)•DmY(p) in Eq. ~13! be-
comes f C(m̄n ;p), which means that the proportionalit
function is directly mapped for every pixel. Hence the fun
tion f C becomes:

f C~x;p!

55
Dm1~p! 0<x<m1~p!

Dm1~p!2Dm2~p!

m1~p!2m2~p!
@x2m2~p!#1Dm2~p! m1~p!,x<m2~p!

Dm2~p!2Dm3~p!

m2~p!2m3~p!
@x2m3~p!#1Dm3~p! m2~p!,x<m3~p!

Dm3~p! m3~p!,x<255

,

~19!

wherem1(p),m2(p),m3(p). The shape off C(m̄n ;p) is
similar to that off G(m̄n) in the GCM mode, despite that i
now contains the spatial positionp of the image. In the
CCM mode, the error factordn

C(p) in all pixels is 0 when
applying the algorithm with the mean color valuem̄n of the
original image.

3 Experimental Analysis of the Accuracy of the
Models for Color Mapping

Color mappings based on the prior two modes were p
formed. Both numerical and psychophysical evaluatio
were undertaken to investigate the effectiveness of
computational model proposed. In an attempt to estab
the generic form off G(x), all of the 80 fabric samples with
16 different texture patterns were used. The details of th
samples and the method of digitizing the samples can
found in Sec. 2. After a fine tuning of parameters based
the investigation of different images, the most suitable e
pirical equation for the GCM mode was obtained as
following:

f G~x!5H 1.2 0<x<64

2
0.4

128
~x264!11.2 64,x<192

0.8 192,x<255

. ~20!

Using the scanner characterization procedure discussed
lier, the RGB values of pixels could be converted t
device-independentXYZ values. TheseXYZ values can
then be converted to CIELAB for the calculation of th
color differenceDELab between two sets of CIELAB coor
dinates (L1* ,a1* ,b1* ) and (L2* ,a2* ,b2* )9:

DELab5@~DL* !21~Da* !21~Db* !2#1/2, ~21!

where DL* 5L2* 2L1* , Da* 5a2* 2a1* , and Db* 5b2*
2b1* .
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 701
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In this study, both numerical and psychophysical expe
ments were employed to evaluate the accuracy of the c
putational model of color mapping. Detailed descriptio
are given in the following.

3.1 Numerical Evaluation

In both GCM and CCM modes, texture images can
mapped with solid color. Figure 8 shows an example
color mapping using the texture information of the origin
image. In the CCM mode, the reproduced and original i
ages are exactly the same whenm̄n of the original image
are applied, and thus theDELab for every pixel is 0, as can
been deduced from the proportionality function of Eq.~19!.
Thus the numerical experiment was conducted in the c
that the luminance channel~containing only texture infor-
mation! is mapped with the mean color of the original im
age in the GCM mode. Although the purpose here is
evaluate the performance of the computational model,
technique is also very useful in color texture image codi
since it provides a way to simulate a color texture ima
knowing only the texture information and the average co
value. Plotted in Fig. 9 are the average pixel-wiseDELab
values between the original and reproduced images in
GCM mode. The averageDELab for all 80 samples is 1.29

It was reported that the threshold for detecting the co
difference of a pair of solid color samples is aroun
1.0DELab .15 Nevertheless, in the case of color with te
ture, one can hardly perceive the difference between
original image and the reproduced one, even if the m
color difference is 1.29, as shown in this study. This res
may be attributable to the parametric effect of t
texture.16,17On the other hand, the pixel-by-pixel color di
ference calculation has shortcomings, as it may not rep

Fig. 8 An example of the color mapping results using GCM and
CCM modes: (a) original image, (b) texture information of the origi-
nal image, (c) color-mapping result with the mean color of the origi-
nal image in the GCM mode, and (d) color-mapping result with a
green solid color in the CCM mode.

Fig. 9 The average pixel-wise DELab between the original and re-
produced image in the GCM mode.
702 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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sent the perceived overall color difference. Some metho
weighting was used in a previous work.18 However, in this
study, the images used are all texture samples with reg
patterns and with no obvious local variance, such as br
or high contrast regions, etc. The pixel-by-pixel color d
ference calculation is therefore quite reliable.

3.2 Psychophysical Evaluation

While the numerical experiment mainly evaluates pix
wise accuracy during color mapping, the psychophysi
experiment attempts to evaluate the visual difference
color and texture appearance that may exist between
color-mapped texture images and physical samples.
fabric sample was attached on a gray plane standing
Verivide viewing booth at a illuminating/viewing geometr
of 80/0 deg to the normal of the sample plane. A D
simulator of the viewing booth was properly adjusted
give similar luminance to that of the monitor white point.
texture image was displayed in the center of a 21-in. So
Trinitron monitor screen adjacent to the viewing booth. T
physical sizes of the physical and displayed samples w
identical. The gray background of the monitor was adjus
to be equal to that of the gray background supporting
physical samples. A Photo Research spectroradiom
model PR704 was used to measure the colors of both fa
and displayed samples. The procedure of the visual ass
ment consisted of four steps.

1. Measuring of the fabric samples in the viewing boo
to obtain theXYZvalues. We characterized the mon
tor using a gain-offset-gamma~GOG! model,19 and
then converted theXYZ values into the monitor
RGB values by the GOG model.

2. Mapping the solid color to the same texture pattern
the fabric sample using the method developed in t
study.

3. Measuring the texture image generated on the scr
using the spectroradiometer, and calculating the co
difference between the texture image and correspo
ing fabric sample.

4. A panel of ten observers with normal color visio
tested by the congenital color vision deficienci
test20 was invited to evaluate the matching using
seven-point scale. Grade 1 was the worst co
matching and grade 7 was the perfect color match
between the texture image on the monitor and
fabric sample in the viewing booth.

The averageDELab in step ~1! between the displayed
solid colors predicted from the GOG model and the phy
cal sample is 1.10. After mapping the solid color to t
texture images, theDELab was calculated in step 3. Thes
color differences and the visual assessment ratings in st
for the 80 samples were plotted in Figs. 10~a! and 10~b!,
respectively. The averageDELab between the color-mappe
texture images and the physical samples is 1.12. This re
clearly indicates that color mapping does not introduce
ditional errors in spectroradiometric measurement, a
hence the color-mapping algorithm produces accurate
sults. It seems that the GOG model still has some error
predicting displayed color. If this error can be reduced,
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Computational model for color mapping . . .
spectroradiometric measurement results for the co
mapped texture image can be further improved. The av
age grade of the visual assessment is around 5.5 in a 1 to 7
scale for all of these 80 samples, which indicates that
visual appearance of the simulated samples are quite c
to the physical samples. The mean variation between
observers for the visual assessment can be indicated by
coefficient of variation CV,17 which is equal to 40%. This
magnitude of variation is very similar to a previous stu
on multimedia color appearance matching.21 Therefore, ac-
cording to the results of both spectrophotometric measu
ment and visual assessment, the results of the color m
ping were quite accurate. Further analysis on the d
showed that there are no obvious relationships between
DELab value obtained from the spectroradiometric me
surements and their corresponding visual grades. The
son for this was considered to be simply because obser
tended to hesitate giving the highest rating 7, even tho
the magnitude of color difference is small. Instead th
often gave 5 to 6 to be on the safe side. The other rea
might be attributable to the media difference, the physi
samples being the reflective medium and the displa
samples being the self-luminous medium, which affe
color appearance matching. Nevertheless, the average
ing of 5.5 indicates that the accuracy of the color mapp
using the model developed in this study was satisfactor

4 Conclusion

Based on the study of channel correlation and histogr
distribution, the proportionality property between chann

Fig. 10 Physical and psychophysical evaluation of the CCM mode
results: (a) DELab of the spectroradiometric measurement, and (b)
grade rating of the visual assessment.
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is established. A computational model of color mapping
texture images is then established. The color accurac
the model developed was tested quantitatively using b
objective and subjective evaluation methods. Two mapp
modes, GCM and CCM, are discussed. The difference
tween the two modes is due to knowledge of the spa
chromatic information of the original image. The conten
of the proportionality functions are different for the tw
modes. Both GCM and CCM perform well in this stud
However, GCM deals with mapping from one to three d
mensions, while CCM deals with mapping from three d
mensions to three dimensions. CCM is considered to
more reliable when the noise is low. The psychophysi
evaluation conducted also shows that the reproduced
ages satisfactorily match the original samples, which f
ther verifies the effectiveness of the model proposed.
though this study concerns only solid-color textures, it c
be extended to multicolor texture images once these ima
are properly segmented. As the computational model
color mapping is based on the proportionality relations
between channels, it performs well for regular textur
such as textile fabrics. But for textures where the prop
tionality basis does not hold, such as angular textures w
high contrast, the model may fail to produce satisfacto
results. In this study, it is also found that due to interrefle
tion within physical texture samples, the color also has
impact on the texture appearances of the scanned ima
For example, the pixel variation~or texture contrast! of
bright color is usually weaker than that of dark color. Th
is, however, slightly different from the visual perceptio
This problem is not addressed in the study, and it is s
gested that this effect may be considered in future work
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