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Robust photometric stereo using structural light sources
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Abstract. We propose a robust photometric stereo method by using structural arrangement of light sources.
In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations.
The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distin-
guished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of
light sources. The highlight detection problem is cast as a pattern classification problem and is solved
using support vector machine classifiers. Considering the possible misclassification of highlight pixels,
the ¢4 regularization is further employed in normal map estimation. Experimental results on both synthetic and
real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of
heavy specular reflection and outperforms the state-of-the-art techniques. © 2014 SPIE and IS&T[DOI: 10.1117/1.JEI
.23.3.033004]
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1 Introduction

Photometric stereo! estimates the normals of surface points
from multiple images which are captured under various
lighting conditions using a fixed camera. Since the 1980s,
photometric stereo has attracted intensive interest in surface
reconstruction as it can produce dense normal maps at
the level of detail that can hardly be achieved by other
techniques.

If a Lambertian surface is illuminated under three or more
light directions, its normal could be well estimated using
least squares (LS). In practice, however, the images may
be corrupted by non-Lambertian effects, such as shadow
and specular highlight. Shadow has the nature of low inten-
sity and thus could be detected by simple thresholding.> The
detection of highlights, however, is a much complicated
issue because the pixel intensity is determined by both sur-
face orientation and albedo. Consequently, image intensity is
not a robust feature for highlight detection and the simple
thresholding method is not applicable.

The photometric stereo techniques dealing with this non-
Lambertian problem can be approximately classified into
two categories, i.e., the modeling ones and the statistical
ones. The modeling methods estimate the bidirectional
reflectance distribution function (BRDF)? of the surfaces*®
or use specified BRDF assumptions.”” These techniques
perform well when the BRDF models can be precisely estab-
lished. However, it is always quite difficult, if not impossible,
to estimate the BRDF parameters accurately without using
a large-scale image set. The statistical methods treat the
non-Lambertian surface points as outliers. The most recent
techniques in this category include random sample consen-
sus (RANSAC) scheme,'™!'! median filter,'? low-rank matrix
completion,'® and sparse Bayesian learning (SBL).'*

In this work, we follow the statistical way for
non-Lambertian photometric stereo and mainly focus on

*Address all correspondence to: Hui-Liang Shen, E-mail: shenhl@zju.edu.cn
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highlight detection. We position the light sources in a planar
grid such that they form a set of three-source collinear
combinations, as illustrated in Fig. 1. Note that in this work,
the term collinear refers to the positions of light sources,
not light directions. By this arrangement, the image inten-
sities corresponding to each collinear combination are
linearly correlated with fixed coefficients under the
Lambertian assumption. When image intensities deviate
from this assumption, the linear relationship will no longer
hold. In this way, the intensity deviations implicitly reflect
the distribution of highlight pixels. Highlight detection is
then cast to a pattern classification problem.'® In this work,
the classification is accomplished by using the support vector
machine (SVM) classifiers,'®!” which perform well even
when the highlights seriously overlap in photometric images.
To further deal with the misclassified highlight pixels, the £
regularization is employed in surface normal estimation.

1.1 Related Work

The idea of photometric stereo was first introduced by
Woodham for surface reconstruction,' under the assumption
that the surface is of strict Lambertian reflections. Coleman
and Jain'® extended Woodham’s method by introducing
a fourth light source. Mallick et al." presented a photometric
stereo method to reconstruct specular surfaces by removing
highlights in a data-dependent color space. Liu and Han*
estimated surface normals of specular objects by using a spe-
cial configuration in which the light source is rotated around
the optical axis of the camera. Barsky and Petrou”' employed
the linear dependence of four illumination vectors to non-
Lambertian surface positions and detected highlight pixels
using color. Argyriou and Petro®” extended this technique?'
to more light sources in a recursive photometric stereo. They
ruled out shadow and highlight pixels first and then corrected
the erroneous normals using interpolation or robust fitting
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4x4

Fig. 1 (a) Photometric stereo system. (b) Two structural arrange-
ments of light sources. The light source positions are equispaced
in planar grids such that they form 3 x 3 and 4 x 4 structures, respec-
tively. In the 3 x 3 structure, there are eight (three horizonal, three
vertical, and two diagonal) three-source collinear combinations. In
the 4 x 4 structure, there are 44 three-source collinear combinations,
as each four-source line contributes four combinations.

before surface reconstruction. These methods can keep the
number of photometric images quite low, but at the cost
of accuracy degradation.

The above-mentioned modeling and statistical methods
detect non-Lambertian reflections using a large number of
photometric images. In the modeling methods, the nonlinear
reflectance models are introduced to include non-Lambertian
reflections. Georghiades* used the Torrance-Sparrow model
to estimate both surface normals and BRDF parameters in an
uncalibrated photometric stereo by solving many unknown
variables. Goldman et al.’ assumed that the objects are
composed of a limited number of fundamental materials.
By representing each pixel with a combination of, at most,
two fundamental materials, both shape and material BRDFs
are estimated simultaneously. Alldrin and Kriegman® used
the general BRDF isotropy to estimate the isocontours of
the depth map under a particular light configuration.
Following their work, Shi et al.” estimated the elevation
angles of surface normal based on the monotonicity of reflec-
tions. Besides specular reflections, shadows are also studied
as extra information for different applications. Chandraker
et al.”* proposed a fast graph cuts based method to detect
shadow and the recovered shadow maps were employed
in constrained surface normal integration. Okabe et al.”
encoded surface points via attached shadow and embedded
the high-dimensional codes into a three-dimensional (3-D)
surface normal space to solve the uncalibrated photometric
stereo. Chung and Jia® employed the cue of cast shadow to
compute surface normal and estimated the global reflectance
parameters using iterative optimization.

The statistical methods treat non-Lambertian surface
pixels as outliers. Wu et al.** formulated a Markov network
for dense photometric stereo, which was optimized by graph
cuts and tensor belief propagation. Miyazaki et al.'> pre-
sented a median-based photometric stereo that iteratively
refines the normals by increasing the candidate normal sub-
sets. These methods incorporate the spatial neighborhood
information to eliminate noise and non-Lambertian effect,
and thus are not quite appropriate for object surfaces with
fine details. In this regard, Mukaigawa et al.'>!! proposed
a method to classify diffuse reflection, specular reflection,
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attached shadow, and cast shadow in a purely pixel-wise
manner. This method is based on RANSAC and thus is
computationally expensive. Wu et al.'* proposed a robust
principal component analysis method by treating the
non-Lambertian effects as missing or corrupted entries, and
solved the problem using a rank minimization scheme.
Motivated by this, Ikehata et al.'* explicitly used the rank-3
Lambertian constraint and cast the problem as sparse regres-
sion. A hierarchical Bayesian model is thus derived from
an SBL framework to solve the problem.

1.2 Motivation of Our Work

To date, most robust photometric methods, though effective,
use a large number of images in real scene experiments.
However, in practical applications, it is always desired to
use a relatively low number of images for the sake of speed-
ing up image acquisition and computational efficiency.
In addition, either explicitly or implicitly, these methods
assume the highlight regions are sparsely distributed. This
assumption makes the arrangement of the light sources
difficult in a limited space capacity.

In the proposed photometric stereo method, the light
sources are arranged to form a set of three-source collinear
combinations, whose structure is fundamental to highlight
detection. Our method uses a relatively low number (for
example, 9) of light sources and simultaneously keeps the
imaging system compact. Compared to the existing tech-
niques that use illumination dependence,’** our method
exploits full correlations among the collinear combinations
and solves the highlight detection problem using pattern
classification. Thanks to the mentioned attributes, the pro-
posed method can produce satisfactory surface reconstruc-
tion and is suitable for practical applications.

2 Problem Statement

Suppose n images of an object surface are captured under
variant light directions and each image contains m pixels.
Under the Lambertian assumption, the image intensity i,
under a light direction 1 is formulated as

i, = pn' (1), (1

where p denotes the diffuse albedo, n = (n,,n,, n,)T
denotes the surface normal, and 7 represents the light inten-
sity. Note that in this work, the light direction 1 and light
intensity ¢ are available via light source calibration.”

Then the calibrated image intensity i is computed as
i="— pnt, @)

which is independent of light intensity. By reshaping each
image as a vector and stacking them to form a matrix
I € R™" Eq. (2) can be written in a matrix notation as

I=NTL, 3)

where N = (piny, -+, p,n,,) € R¥>" denotes the albedo-
scaled normal matrix and L = (I;, ---,1,) € R¥>" denotes
the light direction matrix.

In the case of non-Lambertian surfaces, Eq. (2) is formu-
lated as
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o=1i+e

=pnTl + e, “4)
where o is the observed image intensity and e is the non-
Lambertian corruption term mainly due to shadow and
highlight. The corresponding matrix is now expressed as

O=I+E

=NTL +E, o)
where O is the observation matrix and E is the corruption
matrix. The objective of photometric stereo is to estimate
the albedo-scaled surface normal N from the corrupted
observation Q. With the estimated normal map, the 3-D
surface can be reconstructed by normal integration.

3 Proposed Method

Figure 2 shows the framework of the proposed robust photo-
metric stereo method. It consists of four main steps, i.e.,
shadow detection, deviation calculation, highlight detection,
and normal estimation. The shadow pixels always have low
intensities, and in this work, we propose an adaptive thresh-
olding method for shadow detection. Specular highlight is
difficult to detect as the image intensity is determined
by both surface normal and albedo, as well as the BRDF.
To deal with this problem, we propose to arrange the light
sources with a set of collinear combinations as illustrated in
Fig. 1. The highlight detection is accomplished by pattern
classification using SVM classifiers.

We note that there are numerous arrangements that can
produce collinear combinations. In this work, we elaborate
the fundamentals of the proposed method based on the 3 X 3
structure and illustrate the experimental results on both the
3 x 3 and 4 X 4 structures. The application of the proposed
method to other structures is straightforward.

3.1 Shadow Detection

For real images, a shadow pixel has nonzero intensity due to
the presence of slight ambient illumination or inter-reflec-
tions. On the other hand, a nonshadow pixel may also have

Shadow Detection

0]

04

01 02 03
02 O
03

04

a relatively low intensity caused by low albedo. Therefore,
a global threshold is not appropriate to detect shadow for
all pixels. In this work, we identify the shadow pixels of
each surface position by using an adaptive threshold 7.

T =n - median(oy, 05, -+, 0,), 6)
where 7 is a fixed parameter and median(-) denotes the
median filter applied on the observed image intensities
0, under n light sources. A pixel is labeled as shadow if
its intensity is less than 7 and as nonshadow otherwise.
Here, we assume that for the majority of surfaces, the
median intensity is of Lambertian reflection. In this way,
the albedo is incorporated in the adaptive threshold. The
optimal value of the parameter n will be determined in
experiment.

We note that, as the light sources are arranged relatively
compactly, highlight and shadow are unlikely to occur
simultaneously on the same surface point. Hence, for surface
points with shadow pixels, we estimate surface normals
directly without highlight detection. For nonshadowed sur-
face points, we detect highlight pixels using the collinear
light source structure before normal estimation.

3.2 Analysis of Intensity Deviation

In the following, we discuss the characteristics of the inten-
sity deviation of a three-source collinear combination that
is fundamental to highlight detection. As illustrated in
Fig. 1(a), the bottom three light sources, u, v, and w, make
a collinear combination. It is evident that their corresponding
light directions, 1,,, 1,, and 1,,, are coplanar. Mathematically,
these light directions satisfy
al, +pl,+ 11, =0, @)
where a, f, and y are referred to as collinear coefficients,
which can be solved up to a scale. Without loss of generality,

we set & = 1, and then /8 and 7 can be uniquely computed.
In this work, we further normalize the coefficient such

that (@, f,7) = [1/(\/ 1+ 5 + )15, 7).
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Fig. 2 Framework of the proposed method. The 3 x 3 light source structure is illustrated as an example.
The pixels 03 and og are assumed to be corrupted by highlight. The intensity deviations corresponding to
the collinear combinations are fed to support vector machine (SVM) classifiers for highlight detection.
The three-dimensional (3-D) object surface can be finally reconstructed from the estimated normal

map by integration.
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According to Eq. (2), the image intensity of a diffuse
pixel is completely determined by surface normal and light
direction scaled by albedo p. Hence, the image intensities
i,, i,, and i, under the light sources u, v, and w satisfy

e =ai, + i, +7i,
= apn’l, + ppn’l, + ypn’l,
= pn’(al, +pl, +11,)
=0. ®)

In the following, ¢ is referred to as intensity deviation.
It is zero when all the three pixels in a collinear combination
have pure diffuse reflection.

For highlight pixels, the observed image intensities o,,,
0,, and o,, are corrupted by specular reflection, and conse-
quently, we have

e =ao, + fo,+yo,
a(iy, +e,) + pli, +e,) +r(i, +ey)
= (ai, + pi, +vi,) + (ae, + pe, +ve,)
= ae, + pe, +ye,, )

which implies that the intensity deviation ¢ is nonzero.

From Egs. (8) and (9), it is possible to identify highlight
pixels using the intensity deviations of collinear combina-
tions. Figure 3 illustrates an example in which o3 and o¢
are highlight pixels. According to the above discussion, in
ideal circumstances, the deviations &, &,, &, and &; have
nonzero values and the others have zero values. However,
because of image noise and BRDF variation, the simple
inference of highlight pixels from the deviations is always
not reliable. In this work, we cast this problem as a pattern
classification problem and use all eight deviation errors to
locate highlight pixels.

3.3 Highlight Detection

We stack all the collinear coefficients into a matrix M by
padding zeros; then under the Lambertian assumption, the
deviation vector € is

(%] 03 01 02 03 01 03

Fig. 3 The three-source collinear combinations and correspond-
ing intensity deviations in the 3 x 3 structure. Pixels 03 and og are
assumed to be corrupted by highlight. The zero deviations are in
blue and the nonzero ones are in red. Nonzero deviations indicate
the existence of highlight pixels in the collinear combination.
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e=Mi
(241 ﬂl Y1 0O 0 0 0 0 O il
0O 0 O a ﬂz Y2 0O 0 O i2

ag 0 0 O ﬁg 0 0 O Y8 ig
=0, 10)

where i is the stacked image intensity vector under the nine
light sources in the 3 X 3 structure. The locations of the
coefficients ay, f, and yy, k € {1,2, ---,8}, in matrix M
are determined by the collinear combinations illustrated in
Fig. 3.

For pixels corrupted by highlight, the observed intensities
are larger than the ideal diffuse components; hence, the
deviation vector becomes

e = Mo
=M(i+e)
= Me, (11)

where o and i denote the stacked intensity vectors with and
without corruption, respectively, and e represents the corrup-
tion vector due to highlight.

According to Eq. (11), the highlight detection problem is
to infer the corruption vector e from the deviation vector e.
Howeyver, as the matrix M is rank-deficient and the BRDF
varies for different materials, there is no one-to-one mapping
from the deviation & to corruption e. Fortunately, in this
work, we are only interested in highlight detection, not
the exact value of e. Hence, we convert highlight detection
to a pattern classification problem.

We use ball scenes as training data because a ball contains
all possible surface normals. The balls are rendered using the
Cook-Torrance reflectance model,> with both diffuse and
specular reflections. Given BRDF parameters, the diffuse
components i and observed intensities o of each surface
point are known. We designate labels 1 to the diffuse pixels
and labels —1 to the highlight pixels. The pattern classifica-
tion problem is solved using n binary SVM classifiers,'®!’

Fig. 4 lllustration of the SVM training procedure in the case of 3 x 3
structure. The nine SVM classifiers use the same deviation matrix as
input data and output the highlight labels for m pixels under the nine
different light sources, where m is the number of pixels in an image.
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where 7 is the number of images (or light sources). Figure 4
illustrates the training procedure. Note that although > 1 balls
can be used for training, we only illustrate the case of a single
training ball for clarity purposes. For each SVM classifier,
the inputs are m deviation vectors € and the outputs are m
labels, where m is the number of pixels in an image.
In the test procedure, we compute the deviation vector for
each surface point and predict the labels of the m pixels
using the trained binary SVM classifiers.

In this work, the SVM classifier is implemented using
the LIBSVM library."” The radius basic function is used as
the kernel function, which is defined as

K(x;,x;) :exp(—%’xi—xj’r), (12)

where the input vector X; is actually the deviation vector ¢;.
The parameter 7 controls the width of the Gaussian function
and is set as the dimension of x;. The tolerance of termination
criterion is set as € = 0.001, and the penalty parameter of
the error term is set as C = 10%.

We note that the collinearity among light sources may not
ideally hold in apractical experimental setup. Nevertheless,
as the training balls are rendered using the actual light direc-
tions, the possible systematic biases are incorporated in
the SVM classifiers and will not affect the classification
accuracy.

3.4 Normal Estimation and Surface Reconstruction

After both shadow and highlight detection, the detected
shadows and highlights are discarded in normal estimation.
However, a few shadow and highlight pixels may still be
incorrectly classified because of image noise or the BRDF
difference between the actual and training data. In addition,
in real circumstances, some image intensities may deviate
from the hard constraint in Eq. (5) due to system noises and
nonideal diffuse reflection. Therefore, similar to Ref. 14, we
use the 7 regularization in normal estimation to eliminate
possible outliers.

With a defined mask matrix W € R™*" whose elements
are 1’s for classified diffuse pixels and 0’s for highlight and
shadow pixels, the surface normal is estimated by

N = arg min{||WO(N’L + E — 0)|2 + A|WQE||,}.
N
(13)

where the operator © denotes the element-wise product
between two matrices. The regularization parameter A is set
as 1 = 1079 in this work. Note that the highlight term E will
shrinkto 0’s when A — oo. This eventually becomes a weighted
LS problem, N = arg miny{[|[WO(NTL — 0)||2}, in which
¢, regularization is not applied.

For surface reconstruction, the gradient fields (z,, zy)T are
computed from the estimated normal as z, = —n,/n,,
2z, = —ny/n,. The surface depth z(x,y) can be represented
in the finite difference form.

Z(x+1,y)—z(x—1,y)

4(x.y) = Z(x,y+1) ;z(x,y -1 . (15)

Equations (14) and (15) can be rewritten in matrix-vector
notation with the stacked depth values z and the gradient
vectors z, and z,.

z,\ Dx
(Zy) B <D>’)Z, (10

where D, and D, denote the gradient operator matrix along
the x axis and y axis, respectively. Each row of matrices D,
and Dy has two nonzero entries, namely, 0.5, in the posi-
tions corresponding to the particular difference operation.
Equation (16) can be treated as a gradient linear encoding
operation, which translates depth to gradient fields.
Additionally, we incorporate the Laplacian-regularized
term in Eq. (16) and apply the #, decoding scheme as*

z = arg min{||z, — D,z[|, + ||z, - D,z
z
+ u||Laplacian(z)||, }, (17)
where y is the weight of the regularization term, which is set
as ¢ = 0.05 in this work. The operator Laplacian(-) denotes

the finite difference Laplacian operator, which corresponds
to the nonzero elements of the following convolution kernel:

0 1 O
1 -4 1]. (18)
0 1 O

Equation (17) can be formulated as a linear programming
problem, which can be effectively solved using convex
optimization.?’

4 Experiments

We evaluate the proposed method on both synthetic and real
scenes, and in both circumstances, the imaging condition is
kept identical. The proposed method is evaluated on both the
3 % 3 and 4 X 4 structures. The planar grids of the two struc-
tures are of same size, and, therefore, the light sources in
the 4 x4 structure are a little more densely positioned.
The performance of the proposed method is compared
with one baseline LS method' and three state-of-the-art
techniques, i.e., RANSAC (Refs. 10 and 11), median photo-
metric stereo,'” and SBL.'*

The synthetic data include two parts, i.e., the scenes gen-
erated using a BRDF model and those rendered using the
MERL material database.’®?° The real scenes were captured
using a practical imaging system. The descriptions of the
synthetic and real scenes are as follows.

BRDF-model scenes: The images were rendered using the
Cook-Torrance reflectance model,® in which the observed
image intensity was computed as

DGF
= pn’l . 19
o /) + p S ( nTV) ( )
where v = (0,0, 1)7 denotes the viewing direction, G is the
geometrical attenuation factor, and F' is the Fresnel coeffi-

2(x,y) = , (14) cient. The term D represents the fraction of facets and is
2 defined as
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Normal

Ball Mozart

Bunny

Fig. 5 Example images rendered by the Cook-Torrance reflectance
model (top) and the ground truth normal maps (bottom) of the three
surfaces Ball, Bunny, and Mozart.

1 tan’ &
D= exp(-222), 20
o2costs P ( o? ) @0)

where ¢ denotes the roughness of surface, h is the half vec-
tor, and ¢ is the angle between n and h. In the experiment,
we set the diffuse albedo p =1 and the specular albedo
ps = 0.5. The roughness parameter varies in the range
[0.005, 0.29] to simulate different highlight levels. Note
that in the BRDF-model scenes, the observed image intensity
is the combination of ideal Lambertian diffuse reflection and
specular reflection components.

MERL scenes: The MERL database contains the reflec-
tance data of 100 real materials which were captured using
a BRDF device. In our experiment, the 100 reflectance
data were used to render synthetic images. Note that as
the MERL database was acquired from real-world materials,
the diffuse reflections of the synthesized object surfaces are
not ideally Lambertian. This puts forward challenges to pho-
tometric stereo methods.

Real scenes: The real imaging system consists of a
QImaging Retiga Exi monochrome camera and a number of
light-emitting diode light sources. The height and width of
the planar grid is 1.2 m, which is relatively compact. In this
setup, the spatial distance between two neighboring light
sources is 0.6 m for the 3 X 3 structure and 0.4 m for the
4 x 4 structure. The distance between the light source grid
and the objects is 1.8 m, and the maximum height of the
objects is 15 cm. With this setup, we can assume parallel
light direction and orthographic projection, which is required
in photometric stereo. For practical consideration, the
acquired images are in the low dynamic range [0, 255].

The BRDF-model and MERL image scenes were ren-
dered using three object surfaces, i.e., Ball, Bunny, and
Mozart. Figure 5 shows the example images and normal
maps of these three surfaces. In these images, both attached
and cast shadows were rendered, whose intensity values are
0’s. All the images have 256 X 256 pixles. As the reflectance
data in the MERL database are of RGB format, the rendered
color MERL images were transformed to gray-scale ones. In
order to keep the imaging conditions of the synthetic and real
scenes identical, the dynamic ranges of the synthetic images
were adjusted as follows. First, we computed the median of
all the intensities of the n images. Second, we rescaled the
image intensities linearly such that the median intensity was
mapped to 0.3. Finally, the rescaled image intensities were
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Doraemon

Horse

Bowl

Fig. 6 Example images of the real objects Sheep, Monkey,
Doraemon, Horse, and Bowl.

clipped into the range [0, 1]. We note that this manipulation
is similar to the exposure adjustment in the real imaging sys-
tem. It will also eliminate the effect of albedo difference
among different materials.

Figure 6 shows the example images of five real objects,
namely, Sheep, Monkey, Doraemon, Horse, and Bowl. As
can be observed, in addition to highlights there are also
attached and cast shadows in these images. We note that
the surface albedos of real objects can be different from
those of training balls, which may affect the accuracy of
highlight classification. A possible solution to this problem
is to cluster the surface points into groups with similar sur-
face albedos and then rescale the image intensities such that
the median intensities of individual groups are all mapped to
0.3. Nevertheless, we find that the influence of surface
albedo is not obvious in normal estimation, and thus we
just linearly map the original image intensity [0, 255] to
range [0, 1] in the experiment.

(a)nnnuu
(b)..-.-
(C).....

Fig. 7 Shadow detection of the ball scene. (a) Ball images.
(b) Manually labeled shadow maps. (c) Detected shadow maps
when #n=0.5. In (b) and (c), the shadow pixels are in blue and
the nonshadow pixels are in gray.
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Fig. 8 Error rates of shadow detection with respect to different
n values.

4.1 Accuracy of Shadow Detection

Unlike the synthetic images, the image intensities of the
shadows in real images are nonzeros due to ambient illumi-
nation or inter-reflection. We use real ball images to deter-
mine the n value for the adaptive threshold in Eq. (6).
Figures 7(a) and 7(b) show the example images and the man-
ually labeled shadow masks, respectively. The appropriate
n value is determined according to the error rate, which is
defined as

number of misclassified pixels
error rate =

: - x 100%. (21)
number of image pixels

Figure 8 shows that # = 0.5, which results in an error
rate <5%, is a good choice for shadow detection. Figure 7(c)
indicates that the resultant shadow maps are visually
quite close to the manually labeled ones. In the following
experiment, we fix # = 0.5 for shadow detection in real
images.

o5 L —=— 1 ball
—e— 2 balls
I |[—*— 3 balls
20 |
Q15 0.005 0.065 0.125
o
S
w 10

L —a— o = 0.065
14 —o—oc=0.125
r —a—c=0.185

Error rate (%)
[o]
T

(o2}
T

0 . I . I . I . I . !
0.0 0.2 0.4 0.6 0.8 1.0

Distance

Fig. 10 Error rates of highlight detection with respect to different
spatial distances d (in meters) between neighboring lighting sources
in cases of different roughness levels o.

4.2 Accuracy of Highlight Detection

As mentioned above, highlight detection is accomplished
using SVM classifiers and the synthetic Ball scenes are
employed in the training procedure. It is required that the
trained classifiers should perform well on object surfaces
with various highlight levels. In this regard, we render
Ball scenes under the 3 X3 structure using the Cook-
Torrance reflectance model. The roughness parameter
o varies in the range [0.005, 0.29], which is considered to
be quite wide.

We evaluate the error rates of highlight detection in the
cases of one, two, and three training balls on the synthetic
Bunny scene. In each case, the training balls are selected
according to the criterion that their roughness parameters
evenly divide the whole roughness range. Figure 9 shows
the error rates of highlight detection with respect to various
roughness levels. In all cases, the error rates become high
when the roughness increases. This is because large rough-
ness levels correspond to wide specular lobes, which will
result in more overlapping highlight regions in photometric
images. The two-ball and three-ball cases exhibit obvious
improvement over the one-ball case. To balance classifica-
tion accuracy and computation burden, we use two training
balls in the following experiment. Our investigation indicates
that, although the error rate does not seem very good in the
roughness range [0.005, 0.075], the quality of the estimated
normal almost does not degrade due to the incorporation of
¢ regularization in Eq. (13).

We also evaluate the error rates of highlight detection with
respect to different distances, d, between neighboring light
sources. Figure 10 shows the results in cases of roughness
levels ¢ = 0.065, 0.125, and 0.185. It is observed that

Table 1 Error rates of highlight detection for the linear discriminant
analysis (LDA) and support vector machine (SVM) classifiers with
respect to various roughness levels.

0 1 1 1 1 1
0.00 0.05 010 015 0.20 0.5 0.0 Roughness 0.05 0.10 0.15 0.20 0.25
Roughness LDA (%) 5.65 8.08 117 16.2 21.9
Fig. 9 Errorrates of highlight detection with respect to different rough- SVM (%) 2.70 235 5.76 10.2 18.0
ness levels in the cases of one, two, and three training balls.
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(@)

(b)

Fig. 11 Detected shadow and highlight pixels of the Monkey object.
(a) Inputimages. (b) Detection results. The shadow pixels are in blue,
the specular pixels are in white, and the diffuse pixels are in gray.

for all roughness levels, the error rates generally decrease
when d increases. This is expected as a smaller distance
will generate more serious highlight overlapping among
neighboring light sources. In the experiment, we adopt
d = 0.6, which is an appropriate balance of highlight detec-
tion accuracy and system compactness.

It is of interest to investigate if a simple classifier can also
accomplish the highlight detection task. Table 1 compares
the error rates of highlight detection of linear discriminant
analysis (LDA) and SVM classifiers. It is observed that
LDA performs worse than SVM on various roughness levels.
This indicates that the highlight detection problem is rela-
tively difficult, especially for large roughness levels.

Figure 11 shows both the shadow and highlight detection
results on the Monkey object. It is observed that the highlight
spots in the photometric images are successfully located. The
attached shadows, and even a portion cast shadows, are also
reliably detected. This verifies that, although the parameter 5
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Fig. 12 Angular errors (in degrees) of the photometric stereo
methods on the Bunny surface when using the 3x3 and 4 x4
structures.
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w/o regularization  with regularization

Images

(a) (b) ()

Fig. 13 Normal estimation with and without ¢, regularization. (a) Two
images and the marked region. (b) Estimated normal map and its
spatial error without regularization. (c) Estimated normal map and
its spatial error with regularization.

in Eq. (6) was learned from a simple ball scene, it is appli-
cable to much more complex surfaces.

4.3 Results on BRDF-Model Scenes

We use the BRDF-model scenes to evaluate the photometric
stereo methods on synthetic images with varying roughness
levels. Figure 12 shows the average angular errors of esti-
mated normal maps of the Bunny surface. As shown, the pro-
posed method performs the best, followed by the RANSAC
and SBL methods. The median method, although performing
better than the LS method, does not bring forth a satisfactory
accuracy.

It is worth noting that the angular errors of the proposed
method are quite low when the roughness is <0.1. In addi-
tion, distributions of the angular errors are considerably dif-
ferent from the distributions of the highlight error rate in
Fig. 9. This is partially due to the reason that, in addition
to highlight detection, the proposed method also employs
¢, regularization in normal estimation. It is verified in
Fig. 13 that the quality of the normal map can be improved
by applying #; regularization.

Table 2 lists the average angular errors of the photometric
stereo methods on the Ball, Bunny, and Mozart surfaces for
a typical roughness ¢ = 0.095. As shown, the proposed
method performs the best among all five methods. Further-
more, compared with the 3 X3 structure, the proposed
method produces improved accuracy under the 4 X 4 struc-
ture. This is because the 4 x4 structure contains more
collinear combinations, which is essential for the proposed
method. It is interesting to note that three methods (LS,
median, and SBL) perform slightly worse when adapted
from the 3 X3 structure to the 4 X4 structure. This is
because, although more images are available in the 4 X 4
structure, the highlight spots are more densely distributed.
This in turn verifies the superiority of the proposed method
in dealing with overlapping highlights.

Figure 14 illustrates the spatial angular errors of the
normal maps produced by different methods. As observed,
the normal maps of the LS and median methods are
greatly biased. The RANSAC method performs better than
the SBL method, but still much worse than the proposed
method.
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Table 2 Average angular errors (in degrees) of the estimated normal maps of the two structures. The surface roughness of the three objects are
0.095. The lower errors are in bold.

3 x 3 structure 4 x 4 structure

LS RANSAC Median SBL Proposed LS RANSAC Median SBL Proposed
Ball 5.63 1.47 3.41 1.97 0.43 5.75 1.00 3.39 2.40 0.29
Bunny 7.90 2.18 4.39 2.85 0.61 8.17 1.28 4.72 3.45 0.41
Mozart 14.39 4.05 7.21 5.50 1.17 14.92 243 8.58 6.95 0.60

Note: LS, least squares; RANSAC, random sample consensus; SBL, sparse Bayesian learning.
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Fig. 14 Angular errors (in degrees) of the three surfaces in the 3 x 3
structure in case of roughness ¢ = 0.095.

Table 3 Computational times (unit: seconds) of different methods in
case 4 x 4 structure and roughness ¢ = 0.095.

Method LS RANSAC Median SBL Proposed
Ball 7 707 83 190 103
Bunny 6 548 65 146 81
Mozart 5 498 57 132 78

Table 3 lists the computational times of different methods,
including the outlier detection and normal estimation steps.
All the methods were implemented using MATLAB® on
a personal computer with 2.20 GHz GPU and 8 GB RAM.
As observed, the proposed method runs faster than the
RANSAC and SBL methods, but lower than the median
and LS methods. For images with 256 X 256 pixels, the com-
putational times of the proposed method ranges from ~80 to
100 s, with about half of this time for highlight detection and
half for normal estimation. Note that the computational effi-
ciency can be much improved if we implement the proposed
method using C++ programming language.

4.4 Results on MERL Scenes

Figure 15 shows the angular errors of the five photometric
stereo methods under the 3 X3 and 4 X 4 structures. The
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Fig. 15 Angular errors (in degrees) of normal maps on 100 diffe-
rent MERL materials under the (a) 3x3 and (b) 4 x4 structures.
The material IDs are independently numbered under the two
structures, in the ascending order of angular errors by the proposed
method.

material IDs in Figs. 15(a) and 15(b) are, respectively, num-
bered in the ascending order of angular errors by the pro-
posed method. It is observed that for all those methods,
the magnitudes of the angular errors are much larger
than those in the BRDF-model scenes (see Fig. 12). This is
because the diffuse and specular components are not as
ideal as those produced by BRDF models, as the MERL
database is acquired from real materials. Overall, the pro-
posed method preforms better than the other methods under
both structures. The improvement is relatively obvious in
the 4 X 4 structure case, as illustrated in Fig. 15(b).

Table 4 lists the average angular errors of the estimated
normals for the 100 MERL materials. For the proposed
method, angular errors under the 4 X 4 structure are lower
than those under the 3 X 3 structure. Overall, the proposed
method performs best, followed by the median, RANSAC,
and SBL methods. Figure 16 illustrates the spatial angular
error of the Bunny surface with material ID = 52 (please
refer to Fig. 17 and Table 5 for material information of
the material ID) under the 3 X 3 and 4 X 4 structures. As
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Table 4 Mean angular errors (in degrees) of the estimated normal maps of the 100 materials in the two structures. The lower errors are in bold.

3 x 3 structure 4 x 4 structure
LS RANSAC Median SBL Proposed LS RANSAC Median SBL Proposed
Ball 8.13 6.95 6.75 7.55 6.68 7.56 6.74 6.23 7.46 6.13
Bunny 8.56 8.68 7.94 7.85 7.44 8.61 8.08 7.74 7.87 6.87
Mozart 12.48 11.35 10.66 10.74 10.14 12.7 10.28 10.96 10.91 9.28

20 observed, the proposed method performs better than the
other methods under both structures.

3x3

0 4.5 Results on Real Scenes
2|

o We also evaluate the five methods on real surfaces under
. ' the 3x3 and 4 x4 structures. As ground truth normal
: ; Eﬁ;’p 0 maps are not available for real surfaces, we only conduct
LS RANSAC  Median SBL Proposed visual comparisons. Figure 18 illustrates the estimated nor-

mal maps of the real object Sheep. It is observed that the

Fig. 16 Angular errors (in degrees) of the Bunny surface with material normal maps produced by the LS method are greatly biased

ID = 52. in the hair and hand regions. Although the RANSAC,

Fig. 17 Material IDs under the 4 x 4 structure [in accordance to Fig. 15(b)] and the corresponding
rendered Bunny surfaces. The rendered images are tone mapped for visualization.
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Table 5 Material IDs under the 4 x 4 structure [in accordance with Fig. 15(b)] and the corresponding material names.

1 Green-plastic 26 Alumina-oxide

2 Specular-violet-phenolic 27 Pink-jasper

3 Aventurnine 28 Yellow-matte-plastic
4 Pink-plastic 29 Pink-fabric

5 Specular-maroon-phenolic 30 White-paint

6 Gray-plastic 31 Violet-rubber

7 Red-fabric2 32 Red-fabric

8 Purple-paint 33 Delrin

9 Specular-red-phenolic 34 Pink-felt

10 Specular-orange-phenolic 35 Polyethylene

11 White-fabric 36 Red-phenolic

12 Specular-green-phenolic 37 White-diffuse-bball
13 Yellow-plastic 38 Light-red-paint

14 Pure-rubber 39 Dark-red-paint

15 Red-specular-plastic 40 Neoprene-rubber
16 Specular-white-phenolic 41 Yellow-paint

17 Orange-paint 42 Teflon

18 Specular-blue-phenolic 43 Blue-fabric

19 Blue-acrylic 44 Polyurethane-foam
20 Maroon-plastic 45 Black-fabric

21 PVC 46 Blue-rubber

22 Nylon 47 Pickled-oak-260
23 Green-acrylic 48 White-marble

24 Specular-yellow-phenolic 49 Green-latex

25 White-acrylic 50 Red-plastic

51 Green-fabric 76 Dark-blue-paint

52 Fruitwood-241 77 Gold-metallic-paint
53 Light-brown-fabric 78 Black-soft-plastic

54 Beige-fabric 79 Two-layer-silver

55 Yellow-phenolic 80 Silver-metallic-paint2
56 White-fabric2 81 Blue-metallic-paint2
57 Silicon-nitrade 82 Green-metallic-paint2
58 Natural-209 83 Green-metallic-paint
59 Pink-fabric2 84 Color-changing-paint1
60 Ipswich-pine-221 85 Black-phenolic

61 Colonial-maple-223 86 Black-oxidized-steel
62 Gold-metallic-paint2 87 Black-obsidian

63 Cherry-235 88 Alum-bronze

64 Special-walnut-224 89 Nickel

65 Two-layer-gold 90 Color-changing-paint3
66 Silver-paint 91 Hematite

67 Pearl-paint 92 Aluminium

68 Color-changing-paint2 93 Chrome

69 Violet-acrylic 94 Blue-metallic-paint
70 Gold-metallic-paint3 95 ss440

71 Red-metallic-paint 96 Chrome-steel

72 Dark-specular-fabric 97 Steel

73 Silver-metallic-paint 98 Brass

74 Specular-black-phenolic 99 Tungsten-carbide

75 Gold-paint 100 Grease-covered-steel

median, and SBL methods produce improved normal estima-
tion, the discontinuous effects caused by seriously over-
lapping highlights are still obvious. In comparison, the
proposed method produces relatively smooth normals in the
corresponding regions, especially under the 4 X 4 structure.
The estimated normal maps of the Monkey surface are illus-
trated in Fig. 19. Clearly, the proposed method produces the
best normal maps in the face region. As the 4 X 4 structure
provides more collinear combinations, it provides further
an improved normal map when compared with the 3 X3
structure. The proposed method also exhibits its superiority
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over its competitors on the Doraemon surface, which is illus-
trated in Fig. 20. The normal maps produced by the proposed
method are very natural, while those by other methods con-
tain obviously visible artifacts.

Figure 21 shows the normal maps of the Horse object
estimated by the proposed method, as well as the recon-
structed 3-D surfaces under two different viewing directions.
As observed, the normal maps on the horse body appear
quite smooth, almost not affected by highlights. Figure 22
shows the normal maps and reconstructed surfaces of the
Bowl object. It is found that the estimated normal maps
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Fig. 18 Estimated normal maps of the real object Sheep using
different methods.

3x3

Normal

Close-up

RANSAC Median SBL

4x4

Normal

Close-up

LS RANSAC Median SBL Proposed

Fig. 19 Estimated normal maps of the real object Monkey using
different methods.

are unbiased by highlights and the details are well kept on
the reconstructed surfaces.

5 Conclusions

This paper proposes a robust photometric stereo method by
using a structural arrangement of light sources. The idea of
the proposed method is to utilize the intensity correlation
among a set of collinear combinations. The shadow pixels
are detected using an adaptive thresholding strategy, and
the highlight pixels are located using the SVM classifiers.
The normal map is further improved using an #; regular-
ization scheme. Experimental evaluations were conducted
on two typical light source arrangements, i.e., the 3 X3
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Fig. 20 Estimated normal maps of the real object Doraemon using
different methods.
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Fig. 21 Estimated normal maps and reconstructed 3-D surfaces of
real object Horse using the proposed method.

3D Surface

Normal

Fig. 22 Estimated normal maps and reconstructed 3-D surfaces of
real object Bowl! using the proposed method.

and 4 x 4 structures. It is validated that the proposed method
outperforms the state-of-the-art techniques on both synthetic
and real scenes.

A limitation of the proposed method is that the normal
estimation accuracy on the MERL scenes is not quite satis-
factory. This is because the diffuse reflection of real materials
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is not ideal Lambertian, and consequently, the intensity
deviation is not a very discriminable feature for highlight
detection. In the future work, we will investigate alternative
structural arrangement of light sources, as well as improved
techniques for highlight and shadow detection.

Appendix

As described in the Experiment section, the material ID of
the MERL database is numbered in the ascending order of
angular errors by the proposed method. As reference, we
show material IDs and the corresponding rendered Bunny
surfaces in Fig. 17 and the corresponding material names
in Table 5. Note that the material IDs are in accordance
with those under the 4 X 4 structure in Fig. 15(b).
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