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Abstract. With the rapid development of multispectral imaging tech-
nique, it is desired that the spectral color can be accurately repro-
duced using desktop color printers. However, due to the specific
spectral gamuts determined by printer inks, it is almost impossible
to exactly replicate the reflectance spectra in other media. In addition,
as ink densities can not be individually controlled, desktop printers
can only be regarded as red-green-blue devices, making physical
models unfeasible. We propose a locally adaptive method, which con-
sists of both forward and inverse models, for desktop printer charac-
terization. In the forward model, we establish the adaptive transform
between control values and reflectance spectrum on individual
cellular subsets by using weighted polynomial regression. In the
inverse model, we first determine the candidate space of the
control values based on global inverse regression and then compute
the optimal control values by minimizing the color difference
between the actual spectrum and the predicted spectrum via forward
transform. Experimental results show that the proposed method can
reproduce colors accurately for different media under multiple illumi-
nants. © 2013 SPIE and IS&T [DOI: 10.1117/1.JEI.22.2.023012]

1 Introduction
Faithful color acquisition and reproduction, as the basis of
color quality control, is a critical demand in the textile, print-
ing, and other industries. Multispectral imaging, for its abil-
ity in accurate reconstruction of spectral spectrum, has been
extensively studied in recent years.1–3 With the acquired
reflectance spectrum, the colors of the object surfaces can
be reproduced with high fidelity on output devices, provided
that the devices are properly characterized. For a color
printer, which is a typical output device, the characterization
consists of forward and inverse models.4,5 The forward
model seeks to convert the device-dependent control values
to the device-independent reflectance spectrum or

colorimetric stimulus.6 The inverse model, which is more
useful in color applications, transforms from a requested
reflectance spectrum to the optimal control values that,
when printed, could reproduce that spectrum or colorimetric
stimulus with greatest possible accuracy.7

In the color imaging field, much work has been conducted
to characterize color printers using physics models, assum-
ing ink intensities are individually controllable.5 However,
this assumption does not hold for the widely available desk-
top printers with solely red-green-blue (RGB) operation
interface. In fact, the embedded conversion between RGB
values and cyan-magenta-yellow-black (CMYK) is unknown
to users. To deal with this problem, we propose a unified
framework, which consists of both forward and inverse mod-
els, to characterize desktop printers.

1.1 Background
In spectral characterization, the Yule-Nielsen modified spec-
tral Neugebauer (YNSN) model8 is particularly effective,
which, despite its simplicity, could produce high accuracy
in color prediction.5 Compared with the original Neugebauer
model, the YNSN model uses an additional factor, namely
n-factor, such that the scattering of light within the paper
substrate can be account for. In the YNSN model, the spec-
trum of a four-ink halftone print is the weighted summation
of 16ð¼ 24Þ different colors referred as Neugebauer primar-
ies, given by all the possible overprints of inks.5 For
CMYKcm (CMYK plus dilute cyan and magenta) printers,
the characterization becomes more difficult, as there is no
unique mapping from the four-dimensional (4-D) CMYK
space to the six-dimensional (6-D)CMYKcm space without
additional constraints.9 Note that the YNSN model is based
on the assumption that the ink densities of the printer can be
individually controlled.

The YNSN parameters, such as n-factor and dot-gain fac-
tor, can be estimated using genetic algorithms6 or total least
squares.10 The recent work shows that, by deducing ink
spreading curves and imposing additional constraints, the
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spectral characterization can be conducted using image tiles
within the the printed color images, without printing special
calibration patches.11 To improve spectrum prediction, the 4-
D CMYK input space can be divided into a grid of cells, and
then the YNSN model can be applied in individual cells
instead of the whole space.12

In addition to the mentioned forward transforms, the
YNSN model can also be employed in the inverse transform,
namely color separation. However, as the spectral character-
istics of print colors are determined by the inks accompanied,
in general, color printers cannot exactly reproduce reflec-
tance spectra of other media. Such an example is shown
in Fig. 1. The print spectra exhibit a particular distribution
in wavelength from 600 to 700 nm, which is totally distinct
to the highlighted spectrum of ColorChecker SG color.
Therefore, in previous work, the target colors are spectrally
mapped to the printer gamut before color separation.13,14

However, as spectral gamut mapping results in changed
spectra, it is unfeasible if the requirement is to exactly repro-
duce color appearances under various illuminants.

Colorimetric characterization provides an alternative sol-
ution. In this category, a multidimensional lookup table
(LUT) is probably the most straightforward and frequently
adopted technique.15,16 While this technique does not require
knowledge of device physics, its application is largely
affected by disadvantages such as large measurement num-
ber and multidimensional interpolation.17 In this regard, opti-
mal sampling is necessary to reduce LUT size and improve
implementation efficiency.18 In additional to LUT, polyno-
mial regression19,20 and neural network21 have been
employed in printer characterization. Local linear regression
using enclosing neighborhood22 and constrained least-
squares regression23 have also showed their effectiveness
in colorimetric characterization. We note that, however, in
most previous work, the colorimetric characterization is con-
ducted under a single illuminantand thus cannot reproduce
faithful colors under multiple illuminants.

1.2 Motivation of this Work
Our motivation is to characterize desktop printers such that
accurate color appearances of multispectral scenes can be
reproduced under multiple illuminants. This requirement
implies that the original reflectance spectra should not be
spectrally mapped to the printer gamut. In addition, as the
ink densities cannot be controlled individually and independ-
ently, the YNSN model or its modified versions are

inappropriate to desktop printers. We propose a unified
framework that establishes the locally adaptive forward
and inverse models for desktop printers. The objective is
to obtain the lowest colorimetric errors under multiple illu-
minants, while the resultant print spectra are not necessarily
the closest replica of the originals. Experiments have been
conducted to evaluate the proposed method.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2 over-
views the proposed framework of printer characterization,
and Sec. 3 introduces the forward model that transforms
RGB values to reflectance spectrum. The inverse model,
which incorporates global regression and numerical optimi-
zation, is elaborated in Sec. 4. Section 5 presents experimen-
tal results and relevant discussion, and finally, Sec. 6
concludes this paper.

2 Overview of the Proposed Method
The forward and inverse models of the printer characteriza-
tion framework is shown in Fig. 2. As illustrated, the control
inputs of the desktop printers are in RGB format, represented
in the integer range [0,255]. The device-independent color
measurement is represented by either reflectance spectrum
or the corresponding CIEXYZ values under various illumi-
nants, including D65, A, F11, and others if needed.

In the forward model, we employ polynomial regression
to model the transform between RGB inputs and reflectance
spectrum. Considering the nonlinear nature of printing proc-
ess, this transform is computed in individual cellular subset-
sin order to achieve high accuracy. When predicting, we first
locate the cell surrounding the given RGB valuesand then
use the corresponding transform to compute the reflectance
spectrum. The details of the forward model will be presented
in Sec. 3.

As mentioned in Sec. 1, due to the spectral characteristics
of the print colors, it is impossible to exactly reproduce the
reflectance spectra of other media. The compromise adopted
in this work is that the reproduced stimulus values should
closely match the original ones under various illuminants.
Accordingly, in the inverse model, we first establish the
global transforms between CIEXYZ and RGB values
for individual illuminants using high order polynomial
regression. Then, for a given reflectance spectrum, we obtain
a RGB candidate under each illuminant. As can be expected,
each RGB candidate is the best to the corresponding

Fig. 1 The reflectance spectra of (a) print colors and (b) ColorChecker SG colors. Due to the quite different spectral characteristics, the highlighted
SG spectrum (in blue) could not be accurately reproduced by the printer.
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illuminant, but is usually not optimal to all illuminants.
Nevertheless, it is reasonable to assume that the optimal
RGB values should be in or close to the space determined
by these RGB candidates. In this regard, we deploy numeri-
cal optimization to compute the optimal target RGB values
by minimizing the color difference between the actual and
predicted spectra via the forward model, as will be elaborated
in Sec. 4.

3 Forward Model
The three-dimensional (3-D) RGB cubic space is equally di-
vided into K × K × K cells, each containing a set of eight
lattice nodes. These nodes are referred as supporting points
in the following. We additionally include the lattice nodes of
the sixneighboring cellsand refer to these nodes as neighbor-
ing points. By grouping the supporting and neighboring
points, we construct a cellular subset for each cell, based
on which the adaptive transform is computed. The adoption
of neighboring points can benefit the polynomial regression
in increasing generality and avoiding over-fitting.

Determined by locations, there are four types of cellular
subsets in the whole RGB cubic grid if not considering ori-
entation, as shown in Fig. 3. The full cellular subset locates
inside the RGB cubic, while the corner, edge, and plane cel-
lular subsets reside at corresponding cubic boundaries. As
can be seen, the number of supporting points is eight for each
subset type, and the number of neighboring points are 12, 16,

20, and 24 for the corner, edge, plane, and full cellular
subsets.

In the following, we use u ¼ ðR;G; BÞ⊤ to denote the
control vector (also referred as RGB vector hereinafter)
fed to the printer, and r ∈ RN×1, whereN ¼ 31, to denote the
spectrum vector. The tristimulus value vector is represented
by q ¼ ðX; Y; ZÞ⊤.

For the cellular subset, the transform between RGB inputs
and reflectance spectrum is nonlinear, and the polynomial
regression is employed in the forward model. As each subset
contains at most 32 points, the third-order polynomial regres-
sion will become over-fitting, and hence we choose the
second-order one. The polynomial extended RGB vector,
ũ ∈ RP1×1, where P1 ¼ 10, is

ũ ¼ ðR;G; B; RG; RB;GB; R2; G2; B2; 1Þ⊤: (1)

Suppose the number of neighboring points for a given cel-
lular subset is L. Note that the value of L is different for the
four types of cellular subset illustrated in Fig. 3. We further
denote the extended polynomial RGB vectors for supporting
and neighboring points as ũai and ũbj , respectively. For poly-
nomial modeling, these extended vectors are assembled in a
RGB matrix, Ũ ∈ RðLþ8Þ×P1 , as

Ũ ¼ ðũa1; : : : ; ũa8 ; ũb1; : : : ; ũbLÞ⊤; (2)

and accordingly, the spectra matrix, R ∈ RN×P1 , of the cel-
lular subset is written as

R ¼ ðra1; : : : ; ra8; rb1: : : ; rbLÞ⊤; (3)

where rai and r
b
j represent the spectrum vectors of supporting

and neighboring points, respectively.
As the supporting and neighboring points locate in differ-

ent positions, it is reasonable to assume that their contribu-
tions to the forward model are also different. In this regard,
we use the weighted least-squares, in which the neighboring
points are less weighted than the supporting points. The
weight matrix, W ∈ RðLþ8Þ×ðLþ8Þ, is defined as

Fig. 2 The unified framework of the proposed printer characterization method. Note that %R denotes reflectance spectrum. In the forward model,
the adaptive transforms are defined on individual cellular subsets. In the inverse model, the RGB candidate space is first determined based on
global regression under individual illuminants, and then the optimal RGB values are computed by using the forward model and numerical opti-
mization. See text for details.

Fig. 3 Four types of cellular subsets. The number of supporting points
is eight for any cellular subsets. The numbers of neighboring points
are 12, 16, 20, and 24 for the corner, edge, plane, and full cellular
subsets.
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W ¼
�
I8 0
0 wIL

�
; (4)

where I8 ∈ R8×8 and IL ∈ RL×L denote identity matrices
with respective sizes. Our investigation indicates that the
characterized color accuracy is not sensitive to w when
w ≥ 0.1, and we adopt w ¼ 0.1 in this work.

Inspired by the YNSN model, we further use the n-factor
to account for the nonlinear light scattering effect within the
paper substrate. Then the forward transform matrix,
F ∈ RP1×N , should minimize the following cost function

kWR1∕n −WŨFk2; (5)

where k · k denotes Frobenius norm and the exponential 1∕n
operates on element-wise manner. The forward transform F
can be solved as

F ¼ ðŨ⊤W⊤WŨÞ−1Ũ⊤W⊤WR1∕n: (6)

With the computed F, the reflectance spectrum, r̃ ∈ RN×1,
can be predicted from the given input vector u as

r̂ ≜ FðuÞ ¼ ðF⊤ũÞn; (7)

where the exponential n operates element-wise. The accu-
racy of spectrum prediction is insensitive to different n val-
ues when n ≥ 2, and in this paper we set n ¼ 2.

4 Inverse Model
As mentioned, the spectral characteristic of print colors are
determined by the equipped inks, and thus the printer cannot
exactly reproduce the reflectance spectra of target colors in
other media. Consequently, it is not feasible to establish the
inverse transform from the original reflectance spectrum to
RGB values. As a compromise, we instead require that the
color appearances of the printed samples should closely
match those of target samples under various illuminants.
Therefore, in the inverse model, we first compute the indi-
vidual RGB candidates from the CIEXYZ values under indi-
vidual illuminants using global regression, and then compute
the desired RGB values that are optimal to all illuminants by
numerical optimization.

4.1 Regression Under Individual Illuminants
Unlike the RGB cubic, the nodes in CIEXYZ space are
irregularly distributed, making adaptive transform not
straightforward in the inverse model. We employ third-
order global polynomial regression to compute the RGB can-
didate from the CIEXYZ values under each illuminant. Our
investigation indicates that the third-order polynomial
regression can produce high color accuracy and avoid the
over-fitting problem at the same time.

Instead of using CIEXYZ values directly, we compute
their logarithm counterparts Xl ¼ logðXÞ, Yl ¼ logðYÞ,
and Zl ¼ logðZÞ. As indicated by our investigation and
also others,20,24 the latter exhibits a better linearity with
RGB values. We construct the third-order polynomial vector
q̃ ∈ RP2×1, where P2 ¼ 20, as

q̃ ¼ ðXl; Yl; Zl; XlYl; XlZl; YlZl; X2
l ; Y

2
l ; Z

2
l ; X

2
l Y; X

2
l Zl; Y2

l Zl; Y2
l Xl; Z2

l Xl; Z2
l Yl; XlYlZl; X3

l ; Y
3
l ; Z

3
l ; 1Þ⊤: (8)

Let the number of training samples beM, we assemble the
CIEXYZ matrix, Q̃ ∈ RM×P2 , as

Q̃ ¼ ðq̃1; q̃2; : : : ; q̃MÞ⊤; (9)

and assemble the RGB matrix, U ∈ RM×3, as

U ¼ ðu1; u2; : : : ; uMÞ⊤: (10)

Then the objective of global polynomial regression is to
find the inverse transform, H ∈ RP2×3, that minimizes the
following cost function

kU − Q̃Hk2; (11)

which yields the transform H under the least-squares sense,

H ¼ ðQ̃⊤Q̃Þ−1Q̃⊤U: (12)

With the computed transform H, the RGB vector,
û ∈ R3×1, corresponding with the given CIEXYZ vector q
under a certain illuminant, is predicted as

û ≜ HðqÞ ¼ H⊤q̃: (13)

Without loss of generality, suppose that three illuminants,
namely, D65, A, and F11, are considered. Accordingly, we
obtain three global transforms, represented byHDð·Þ, HAð·Þ,

and HFð·Þ for these illuminants, and the RGB candidates are
computed as ûD65 ¼ HDðqÞ, ûA ¼ HAðqÞ, ûF11 ¼ HFðqÞ.
We note that these RGB candidates should be the best sol-
ution to the specific illuminant (e.g., D65), but may result in
higher errors under other illuminants (e.g., A and F11). To
balance the errors under various illuminants, the straightfor-
ward way is to average these RGB values. However, due to
the nonlinearity between RGB and CIEXYZ, this simple
averaging is not optimal. Therefore, we deploy numerical
optimization to compute the target RGB values, as will be
elaborated in the following. The accuracy of simple averag-
ing and numerical optimization will be compared in the
experiment.

4.2 RGB Optimization
With the computed RGB candidates under various illumi-
nants, we can obtain the minimum RGB values Rmin,
Gmin, Bmin and maximum values Rmax, Gmax, Bmax in the
respective dimensions. With these extreme values, a local
RGB candidate space ΩRGB can be constructed. As the
RGB candidates are computed from individual illuminants,
it can be expected that the optimal target RGB vector belongs
to, or at least is close to, the local space ΩRGB.

According to the forward model, the reflectance spectrum
corresponding to the RGB vector u is predicted as r̂ ¼ F ðuÞ.
The CIELAB color difference between actual spectrum r and
the predicted spectrum r̂ is denoted as ΔEmðr;F ðuÞÞ, where
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m ∈ fD65;A; F11g. The inverse model requires that the
optimal RGB vector produces low color differences under
all these illuminants, and accordingly, the cost function is
defined as

JðuÞ ¼
X
m

ΔEmðr;FðuÞÞ: (14)

For the printer used in this work, the span ofΩRGB at each
dimension is approximately 10 in range [0,255]. This means
that exhaustive searching of optimal input uopt requires about
1000 evaluations of cost function, which is computationally
expensive for practical applications. Therefore, we resort to
differential evolution to compute the optimal RGB vector.

Differential evolution, since its introduction by Storn and
Price25,26 has been successfully applied in mechanical engi-
neering27 and pattern recognition.28 As with other evolution
algorithms, differential evolution generally involves three
steps, i.e., mutation, crossover, and selection. Accordingly,
typical parameters include population size, mutation scaling
factor, and crossover rate. Recent studies show that its per-
formance can be further improved by balancing exploration
and exploitation abilities, self-adaptation, and parameter
control.29,30 Considering the RGB space is of low dimension
and integer data type, we accordingly modify the algorithm
so that it adapts well to our problem.

In the algorithm, let NP be the population size and
g ∈ f1; 2; : : : ; gmaxg the generation, then the j’th population
in evolution is represented by uj;g, where 1 ≤ j ≤ NP. In this
work we set NP ¼ 9 and gmax ¼ 3. When using large NP and
gmax values, the improvement of colorimetric accuracy is not
obvious. This indicates that the proposed method is insensi-
tive to population size and generation number.

The initial RGB vector, uj;0 ¼ ðRj;0; Gj;0; Bj;0Þ⊤, for the
j’th population is generated randomly in the local RGB can-
didate space ΩRGB:

Rj;0 ¼ Rmin þ brand · ðRmax − RminÞc; (15)

Gj;0 ¼ Gmin þ brand · ðGmax − GminÞc; (16)

Bj;0 ¼ Bmin þ brand · ðBmax − BminÞc; (17)

where the operator rand generates uniformly distributed ran-
dom number in range (0,1), and b·c rounds the variable to the
nearest integer.

After population initialization, trial vector is generated by
adding the difference between two population vectors to a
third one, which is referred as mutation. More specifically,
the target vector is computed as

vj;gþ1 ¼ ubest;g þ F · ður1 − ur2Þ; (18)

where the random indices r1; r2 ∈ f1; 2; : : : ; NPg are mutu-
ally exclusive, and the scaling factor F ∈ ð0; 2Þ. Note that, in
Eq. (18), the trial vectors are generated from the current best
vector ubest;g. This is because the local minima are always
closely distributed in the RGB space, and their number is
not larger than three. Furthermore, as the local space
ΩRGB is only 3-D and of relatively limited span, we use

full mutation by setting F ¼ 1. After mutation, a crossover
procedure is usually adopted to increase the potential diver-
sity of the population. In this work full crossover is adopted.

To determine whether vj;gþ1 should become a member of
generation gþ 1, the trial vector vj;gþ1 is compared with the
target vector uj;g according to the cost function defined in
Eq. (14). If the trial vector vj;g produces a cost lower than
uj;g, then uj;g is set as vj;g; otherwise uj;g keeps unchanged.
After gmax generation, we get the optimal RGB vector

uopt ¼ arg min
u
JðuÞ: (19)

We note that, some reflectance spectra may exceed the
printer gamut, i.e., the values of uopt are out of range [0,255].
In this case, we simply clip the RGB values into the
range [0,255].

5 Experiments and Discussion
In the experiment, we employed a CMYKcm printer (Epson
Stylus Photo 1390) to evaluate the proposed printer charac-
terization method. The substrate used for printing was Epson
Gloss Photo Paper. As it is not feasible to control ink den-
sities directly with the accompanied drivers, the printer was
treated as a RGB device.

Totally 216 (¼6 × 6 × 6) print colors were used to estab-
lish the forward and inverse models, and other 100 random
print colors were used to evaluate the forward model. To
evaluate the inverse model, we employed color samples in
three different media, including 96 patches of the X-Rite
ColorChecker SG (referred as SG hereafter), 100 randomly
selected fabric Pantone patches (referred as Pantone here-
after), and multispectral images of textile fabrics. These
color targets and their corresponding usage are listed in
Table 1. The spectra of these solid samples were measured
by GretagMacbeth ColorEye XTH spectrophotometer. The
spectral images of textile fabrics were acquired using the
multispectral imaging system developed in our laboratory.3

5.1 Accuracy of Forward Model
The proposed forward model is compared with the com-
monly adopted 3-D LUT method on the same 216 training
samples. Spline interpolation was adopted in the LUT
method. Table 2 shows the spectral root-mean-square (rms)
errors and CIEDE 2000 color difference errors,31 ΔE00, for
the proposed method and LUT method. The spectral mean

Table 1 The color targets and their corresponding usage.

Target Sample number Usage

Print training samples 216 Establish forward and
inverse models

Print test samples 100 Evaluate forward model

SG samples 96 Evaluate inverse model

Pantone samples 100 Evaluate inverse model

Multispectral image — Evaluate inverse model

Journal of Electronic Imaging 023012-5 Apr–Jun 2013/Vol. 22(2)

Shen et al.: Adaptive characterization method for desktop color printers



rms error is 0.0034, and the mean ΔE00 errors under various
illuminants are about 0.5. These error magnitudes are clearly
lower than those of the LUT method.

As the second-order polynomial regression is applied on
each cellular subset, it is necessary to evaluate the color dis-
continuity between neighboring subsets. Figure 4 shows the
lightness discontinuity of the center point ðR ¼ 127;
G ¼ 127; B ¼ 127Þ across the cell boundaries in the red,
green, and blue dimensions. As can be found, the disconti-
nuity is visible only for a small number of cell boundaries.
Our investigation indicates that the average ΔE00 at all cell

boundaries is around 0.12 under the D65 illuminant. This
magnitude is considerably lower than the modeling error
of the polynomial regression.

5.2 Accuracy of Inverse Model
Table 3 shows the ΔE00 errors when the inverse modeling is
applied on a single individual illuminant. As expected, the
colorimetric differences are quite small when the illuminants
in the modeling and evaluation procedures are identical, but
are considerably large otherwise. For example, for the SG
target, when the modeling illuminant is D65, the average
ΔE00 errors are 1.37, 2.60, and 2.71 for the evaluation illu-
minants D65, A, and F11, respectively. The unbalanced error
distribution is generally unacceptable in practical applica-
tions, and this consequently motivates the adoption of
numerical optimization strategy in this work.

Note that, the cost function [Eq. (14)] of the inverse model
is defined on the predicted colorimetric errors between the
input spectrum and the predicted spectrum using forward
model. When evaluating the accuracy of the inverse model,
however, the actual colorimetric errors are computed
between the input spectrum and the spectrum of the actually
printed color. It is expected that, due to unperfect accuracy of
the forward model, these two errors are not identical.
Figure 5 shows the correlations of the predicted and actual
errors of the Pantone samples. It is observed that, although
the magnitudes of these two errors are not identical, they are
statistically proportional. This in turn validates that the cost
function [Eq. (14)] is reliable for RGB optimization.

In the inverse model, we used Vrhel’s method,15 which is
based on multidimensional LUT, as the baseline method.
Both Vrhel’s method and the proposed method were evalu-
ated on the same data sets. Table 4 shows the ΔE00 errors of

Table 2 Spectral rms errors and ΔE00 errors of the proposed forward model and the LUT method.

Method

Spectral rms ΔE00 under D65 ΔE00 under A ΔE00 under F11

Mean Std. Max. Mean Std. Max. Mean Std. Max. Mean Std. Max.

LUT 0.0058 0.0030 0.0200 0.85 0.43 2.54 0.82 0.40 2.36 0.91 0.48 2.70

Proposed 0.0034 0.0021 0.0115 0.50 0.29 1.46 0.48 0.28 1.25 0.50 0.30 1.45

Fig. 4 The lightness discontinuity of the center point ðR ¼ 127; G ¼
127; B ¼ 127Þ across the cell boundaries in the red, green, and blue
dimensions. The dotted ellipses mark the most visible discontinuities.

Table 3 The ΔE00 errors under a single illuminant for SG samples and Pantone samples.

Target Illuminant

ΔE00 under D65 ΔE00 under A ΔE00 under F11

Mean Std. Max. Mean Std. Max. Mean Std. Max.

SG D65 1.37 0.64 3.78 2.60 1.67 7.43 2.71 1.45 6.86

A 3.01 2.13 8.43 1.22 0.60 3.25 3.05 1.97 9.88

F11 2.62 1.64 8.55 3.31 2.02 9.60 1.51 0.83 4.64

Pantone D65 1.61 1.26 8.89 2.11 1.43 6.92 2.51 1.56 9.22

A 2.46 1.56 8.54 1.44 1.02 6.32 2.82 1.45 8.80

F11 2.50 1.38 8.13 2.98 1.61 6.89 1.88 1.33 8.37
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Table 4 The ΔE00 errors of SG samples using Vrhel’s method15 and the proposed method.

Method Strategy

ΔE00 under D65 ΔE00 under A ΔE00 under F11

Mean Std. Max. Mean Std. Max. Mean Std. Max.

Vrhel’s Averaging 4.13 2.72 13.1 4.88 2.77 13.7 5.02 3.01 14.9

Optimization 2.20 1.74 9.68 2.59 1.79 8.59 2.53 1.54 9.23

Proposed Averaging 1.87 1.15 6.07 1.93 1.13 5.56 1.94 0.96 4.29

Optimization 1.56 1.02 5.27 1.62 1.11 5.70 1.60 0.83 3.92

Table 5 The ΔE00 errors of Pantone samples using Vrhel’s methodx15 and the proposed method.

Method Strategy

ΔE00 under D65 ΔE00 under A ΔE00 under F11

Mean Std. Max. Mean Std. Max. Mean Std. Max.

Vrhel’s Averaging 3.83 2.71 12.2 4.14 2.57 11.9 4.31 2.69 12.1

Optimization 1.89 1.38 8.47 2.06 1.39 10.2 2.17 1.35 8.20

Proposed Averaging 1.65 1.06 7.04 1.83 1.10 6.96 1.84 1.13 7.55

Optimization 1.43 1.04 6.17 1.47 0.90 4.59 1.55 0.90 6.40

Fig. 5 The distribution of the simulated ΔE00 errors under various illuminants with respect to the actual ones of the Pantone samples.
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the two methods for the SG targets, with averaging and opti-
mization strategies. It is clear that, for both methods, the opti-
mization strategy produces lower colorimetric errors. Under
the optimization strategy, the average ΔE00 errors of the pro-
posed method are around 1.5, while those of Vrhel’s method
are above 2.2. Further evaluation on the Pantone color target
(Table 5) also validates the superiority of the proposed
method over the baseline one.

We also applied the proposed inverse method for the
reproduction of multispectral images. Figure 6 shows the
actual and printed images of a textile fabric under three illu-
minationsas well as their colorimetric errors. For visualiza-
tion purpose, these images are transformed into the sRGB
color space.32 Note that, as actual spectrum measurement
for each pixel is unfeasible, the print image is generated
by first computing the printer control values via the inverse
model, and then predicting spectra via the forward model. It
is observed that, for illuminants D65 and A, the color differ-
ence errors are relatively low and widely distributed; while
for illuminant F11, the green regions exhibits high errors.
Overall, the original sample and print versions under
these illuminants are visually undistinguishable, which fur-
ther validates the effectiveness of the proposed method.

6 Conclusion
For most desktop printers, the ink densities are not individu-
ally controllable, and thus the YNSN model cannot be
directly applied. To cope with this problem, this paper
proposes a unified method, which consists of forward
and inverse models, to characterize desktop printers.
Considering the nonlinear nature of the printing process,
the modeling is carried out in a locally adaptive manner.
In the forward model, the transform is computed using adap-
tive polynomial regression for each cellular subset. In the
inverse model, the RGB candidates of an input spectrum

are first obtained using global regression, and then the target
RGB values are estimated using numerical optimization.
Experimental results indicate that the proposed method pro-
duces high color accuracy, which is sufficient to most prac-
tical applications.
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