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Abstract— Place recognition is an important technique for
autonomous cars to achieve full autonomy since it can provide
an initial guess to online localization algorithms. Although
current methods based on images or point clouds have achieved
satisfactory performance, localizing the images on a large-scale
point cloud map remains a fairly unexplored problem. This
cross-modal matching task is challenging due to the difficulty
in extracting consistent descriptors from images and point
clouds. In this paper, we propose the I2P-Rec method to solve
the problem by transforming the cross-modal data into the
same modality. Specifically, we leverage on the recent success
of depth estimation networks to recover point clouds from
images. We then project the point clouds into Bird’s Eye
View (BEV) images. Using the BEV image as an intermediate
representation, we extract global features with a Convolutional
Neural Network followed by a NetVLAD layer to perform
matching. The experimental results evaluated on the KITTI
dataset show that, with only a small set of training data, I2P-
Rec achieves recall rates at Top-1% over 80% and 90%, when
localizing monocular and stereo images on point cloud maps,
respectively. We further evaluate I2P-Rec on a 1 km trajectory
dataset collected by an autonomous logistics car and show that
I2P-Rec can generalize well to previously unseen environments.

I. INTRODUCTION

Localization is an essential module for autonomous cars
to perform perception, planning, and navigation [1]. A com-
monly used localization approach is to match the Light
Detection And Ranging (LiDAR) scans with a pre-built
point cloud map [2]. This method can exploit the high
precision and rich geometric information of point cloud
maps. However, the method is hard to deploy commercially
due to the high price and large volume of LiDAR scanners,
although the maps have been widely used in fields such
as autonomous driving. As an alternative, camera is more
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Fig. 1. Recognizing places of images on large-scale point cloud maps.
Global descriptors are extracted from both images and point clouds. Place
recognition is performed by searching the database for point clouds with
the minimum descriptor distance to the query image.

competitive because it is much cheaper, smaller, and can
provide rich semantic information. Thus, the question comes
out naturally that whether we can localize the images in
point cloud maps. In recent years, some methods [3], [4]
try to tackle this problem by matching the images with point
clouds based on the local features. A main limitation of these
methods is that they need to know the rough position of a
camera to give an initial guess, which itself is a problem to
be solved. To fill this gap, we work on estimating the rough
locations of images on a large-scale point cloud map without
other prior information.

The rough location estimation problem can be viewed as
a place recognition problem, which is to search through a
pre-built database to retrieve the closest frame to a query, as
shown in Fig. 1. Lots of place recognition methods [5], [6],
[7], [8], [9], [10], [11] have been proposed in cases where
queries and databases share the same data modality, such as
images or point clouds. However, how to localize images in
a point cloud database remains a challenging and unsolved
problem due to the following reasons. First, it is hard to
model the similarity between the data from two different
types of sensors. The LiDAR obtains depth information by
calculating the laser time of flight (TOF), while the camera
gathers photometric information through the response of
CMOS to ambient light. There is little explicit correlation
between the data of these two modalities. Second, it is
difficult to design a unified feature extractor as the format of
data varies. LiDAR scans are often organized as unordered
points, whereas the images are in the form of regular grids.

Cattaneo et al. [12] introduces a method to perform visual
place recognition on LiDAR maps. They exploit a 2D and



a 3D Deep Neural Network (DNN) to extract features from
images and point clouds respectively, and create a shared
embedding space between images and the LiDAR map.
However, without special designs to deal with the modality
difference, this method may have weak generalization ability.
In this work, we propose our approach called I2P-Rec to
solve the problem by modality transformation. We first
leverage the monocular and stereo depth estimation methods
[13], [14], [15] to recover point clouds from the input images.
This procedure unifies the modality of data used for place
recognition. Inspired by recent works on LiDAR-based place
recognition methods [7], [16], we project the point clouds
from both the query images and database into Bird’s Eye
View (BEV) images. We then use a modern Convolutional
Neural Network (CNN) for global feature extraction. We
evaluate our method on both the KITTI dataset [17] and a
dataset collected by ourselves, demonstrating that,

1) with only a small amount of training data, I2P-Rec can
effectively localize images on large-scale point cloud maps;

2) I2P-Rec can generalize well to unseen environments;
3) I2P-Rec benefits from the accuracy of depth estimation

and can achieve higher recall rates with better depth estima-
tion algorithms.

We believe our method can serve as a good baseline for
the task of visual place recognition on point cloud maps.
With a simple yet effective design, we hope our method can
draw the attention of the robotics community to the problem
of cross-modal place recognition, and lead to the emergence
of more excellent algorithms.

II. RELATED WORKS

In this section, we review the place recognition methods
that work on single-modal data. We then discuss the recent
development of the approaches to visual place recognition
on point cloud maps.

A. Place Recognition Based on Single-modal Data

Camera is a widely used sensor for place recognition.
Benefiting from the local image features [18], [19] and
the bag-of-words techniques [20], a number of image-based
place recognition methods [10], [21], [22], [23], [24] have
been developed. These methods are proposed based on an
assumption that similar structures in the environment lead to
similar local feature distributions. They first learn the feature
distribution by clustering the local features into clusters,
and then compute a feature vector according to the distance
of each local feature to cluster centers. Most subsequential
place recognition methods try to improve performance by
designing better local feature extractors and feature aggre-
gators. For example, NetVLAD [11] extracts local features
by CNN and designs a network to learn the cluster centers.
Patch-NetVLAD [25] follows NetVLAD and leverages the
strengths of both the global and local features to generate
more distinct patch-level features.

In recent years, LiDAR-based place recognition has be-
come a hot topic due to the ability of LiDARs to acquire

accurate depth information and its robustness to illumina-
tion changes and view variations. Following the setup of
NetVLAD [11], PointNetVLAD [5] uses the point cloud
encoder, i.e. PointNet [26] for local feature extraction, and
then generates global features with NetVLAD. To take full
advantage of contextual information, PCAN [27] introduces
the point contextual attention network to extract task-relevant
features. However, both PointNetVLAD and PCAN cannot
capture local geometric structures due to their independent
treatment for each point. Thus, the following methods mainly
focus on exploiting neighborhood information [6], [28], [29].
On the other hand, some methods project point clouds into
images and perform recognition with features from the im-
ages. Kim et al. [30] propose the scan context descriptor by
projecting point clouds into an ego-centric coordinate system
built by partitioning the ground space into bins according to
both azimuthal and radial directions. OverlapNet [31], [32]
adopts a siamese network to learn the overlap between a pair
of range images. BVMatch [7] projects point clouds into
BEV images and introduces the BVFT feature for global
feature extraction and pose estimation. It shows that the
BEV is quite effective representation and BEV projection-
based methods [7], [9] achieve state-of-the-art performance
in terms of retrieval recall, robustness, and generalization
ability. In this work, we utilize BEV projection to build a
bridge between images and LiDAR maps.

B. Visual place recognition on point cloud maps

Although place recognition based on single-modal data has
been studied a lot, how to recognize images on a point cloud
map remains a challenging problem. One straightforward
solution is jointly training a 2D CNN for images and a
3D DNN for point clouds to create shared embeddings [12].
However, this approach does not generalize well to unseen
environments. [33] proposes to project images and point
clouds into unit spheres and extract features through sphere
CNN [34], [35]. This method requires multiple images as
input but our method only uses a monocular image or a pair
of stereo images. Some methods [3], [4] detect local features
from images and point clouds and match them for place
retrieval. These methods can only be deployed in a local
area and cannot be extended to a large-scale environment
well.

III. METHOD

The visual place recognition on point cloud maps can
be defined as, given an image, looking into a point cloud
database with known poses and retrieving the one represent-
ing the same place of the query image. We propose I2P-Rec
to solve the problem. In this method, we first extract global
descriptors from a set of point clouds collected in a desig-
nated area. We build the database with the point clouds and
their corresponding descriptors. Then, we generate global
descriptors of the query images and retrieve the very frames
with the minimum feature distance to the queries from the
database.



Fig. 2. The training framework of the proposed I2P-Rec. Query images are converted to point clouds via a depth estimation module. Then, both point
clouds from queries and the database are projected to BEV images. Based on the BEV images, global features are extracted by a CNN and a NetVLAD
layer. Triplet loss is adopted for supervision.

The key of our I2P-Rec is to generate global descriptors
that can model the appearance similarity between images
and point clouds. In this process, we have to take special
consideration of the modality difference between the queries
and the database. To this end, we transform both the images
and point clouds into BEV images for feature extraction and
perform matching on the basis of the BEV representation. In
the following sections, we first introduce point cloud recov-
ery from the query images via depth estimation methods. We
then explain the process of BEV-image generation. Finally,
we detail our network architecture.

A. Depth Estimation

According to the camera setup, depth estimation methods
can be divided into two types, monocular methods using a
single camera, and stereo methods using a pair of cameras.
Monocular methods usually recover the depth directly from
a single image and predict scale information of monocu-
lar depth with the training based on depth supervision or
consistency between stereo images [36]. On the other hand,
stereo methods first predict a disparity map D(u, v), and
then generate the depth map from it. The depth of a pixel at
position (u, v) can be derived as

depth(u, v) =
fU ∗ b
D(u, v)

, (1)

where b is the horizontal offset between a pair of cameras
(i.e., baseline) and fU is the horizontal focal length.

After obtaining the depth map, we back-project each
pixel to a 3D point. We establish the coordinate system
according to the right-hand rule, with the x-axis pointing
to the right, the y-axis pointing forward, and the z-axis
pointing upward. In this coordinate system, the x-y plane

is the ground plane. For each pixel at position(u, v) with a
depth value of depth(u, v), we obtain the corresponding 3D
point (xi, yi, zi) by

[xi, yi, zi]
T = R−1

(
K−1 [u, v,depth(u, v)]

T − t
)
, (2)

where K is the camera intrinsic matrix, while R and t
correspond to the extrinsic rotation matrix and translation
vector respectively. i stands for the point counts.

Our I2P-Rec is agnostic to different depth estimation al-
gorithms. In general, the more accurate the depth estimation
is, the better performance our method can achieve. In the
experiment section, we will evaluate our method with both
monocular and stereo depth estimation algorithms.

B. Projecting Point Clouds to BEV Images.

Using BEV images as an intermediate representation
has been adopted by some LiDAR-based place recognition
methods [7], [16]. In this work, we generate BEV images
following BVMatch [7]. We first grid the ground plane into
squares, each with a side length of 0.4m, and then project
the point clouds perpendicularly to the ground. We count the
points in each grid and take the normalized number of points
as values for each pixel in a BEV image.

Another problem arises that the size of BEV image gener-
ated from images and LiDAR scans may be different though
representing the same areas. This is because the cameras
and LiDAR scanners have different view ranges. Usually,
multi-beam LiDAR sensors own a 360-degree field of view,
whereas the camera only senses the cone-shaped area in the
front. To deal with the situation, we crop the point clouds
from both images and LiDAR scanners into a window with
the x-axis limited to [-25 meters, 25 meters], y-axis to [0



TABLE I
PARTITION OF THE DATASET.

Train Val Test
sequence 00 00 02 05 06 08

frame 0-3000 3200-4540 0-4660 0-2760 0-1100 0-4070

meters, 50 meters], and z-axis to [-5 meters, 5 meters]. As
we perform projection on the x-y plane, the resulting BEV
image is of size 125× 125.

C. Network Architecture

We use a network combined with a CNN network and
a NetVLAD layer [11] in our I2P-Rec to generate global
descriptors from the BEV images. The details of the network
architecture and the training process are shown in Fig. 2.
During the training process, we find the positive and negative
matches for the query image according to ground truth
distance. Then we transform these data into BEV images.
We extract local features of the images with weight-shared
CNN and generate global descriptors with the NetVLAD. For
training supervision, we adopt the lazy-triplet loss which can
be written as

Ltriplet = max
j

([m+ δpos − δnegj ]+) (3)

where [...]+ denotes the hinge loss, m is the constant margin,
δpos is the feature distance between the query and its positive
frame, and δneg is the feature distance between the query and
its negative frames.

In the implementation, we use the ResNet-34 [37] as our
CNN backbone. we set the triplet margin m=0.5, and the
number of clusters of NetVALD as 64. Moreover, in the
training stage, we apply 2 positives and 10 negatives for
loss calculation. We also adopt the hard mining strategy [38]
following NetVLAD after the first 10 training epochs.

IV. EXPERIMENTS

In this section, we evaluate the performance of our I2P-
Rec for visual place recognition on point cloud maps. We
compare it with the baseline method [12], and test it with
both monocular depth estimation methods and stereo algo-
rithms.

A. Setup

1) Dataset: We conduct experiments on the KITTI dataset
[17]. KITTI contains a large number of synchronized and
calibrated point clouds and images and is widely used to
verify autonomous driving-related algorithms. We use the
00, 02, 05, 06, and 08 sequences of its Odometry subset
for evaluation. As shown in Table I, we take the images and

TABLE II
THE RECALL@1 OF MONOCULAR VISUAL PLACE RECOGNITION

METHODS ON THE KITTI DATASET.

Sequence 00 02 05 06 08
Baseline Method [12] 58.0 4.0 10.6 22.3 5.3

MIM-Points 53.3 6.9 14.8 20.0 12.5
MIM-I2P 74.3 46.3 49.9 41.9 42.1

point clouds of 0-3000 frames in sequence 00 for training,
3200-4540 frames in sequence 00 for validation, and the rest
of the sequences for testing.

To further validate the generalization ability of I2P-Rec,
we construct the MAPO dataset. This dataset was built by a
rotating LiDAR of 32 beams and a single camera mounted
a mobile robot. It covers a trajectory length of over 1 km
in MAPO, Beijing City of China. There are 3770 frames of
image in the dataset and we use the frames 0 to 1000 for
training and the frames 1001 to 3770 for testing.

2) Method Setup: We evaluate our method with dif-
ferent monocular and stereo depth estimation algorithms.
For monocular algorithms, we use MIM-Depth [15] which
achieves state-of-the-art depth estimation performance. For
stereo algorithms, we adopt PSM-Net [14] and LEA-Stereo
[39]. For all these methods, we use their open sourced
implementations and pre-trained models released on the
websites1.

For clarity, we denote our method with different depth
estimation algorithms as name of depth estimation algorithm
- I2P, i.e., MIM-I2P, PSM-I2P, and LEA-I2P in the following
experiments.

For a more comprehensive evaluation, we also build a
place recognition solution that uses point clouds as an
intermediate representation. Specifically, we recover point
clouds from images via depth estimation and we extract
global descriptors from the clouds with PointNetVLAD [5].
We denote this method using different depth estimation
algorithms as MIM-Points, PSM-Points, and LEA-Points.

3) Evaluation Metrics: We adopt the recall at Top-1
and the recall at Top-1% as the evaluation metrics. When
performing the matching, we extract global descriptors from
query images and retrieve Top-N nearest matches. We regard
a match between a query image and the point cloud as
true positive when their geometric distance is less than a
threshold of t = 10 meters. Recall at Top-N is computed
as the proportion of correct predictions among all positive
instances in a dataset considering the Top-N prediction for
each sample.

B. Monocular Visual Place Recognition

We evaluate the place recognition performance based on
monocular images. We compare our method with the baseline
method [12] that adopts 2D and 3D DNNs to extract features
from query images and point clouds, respectively. Table II
shows the recall@1 of the methods on the KITTI dataset. It
can be seen that the baseline method achieves modest recall
on the validation sequence but can hardly generalize to the
test sequences. It is unexpected that, even with the modality
transformation, MIM-Points show no obvious superiority to
the baseline method. In contrast, MIM-I2P achieves the best
recall on both validation and test sequences and surpasses
other methods with large margins. This result demonstrates
the importance of BEV representation in our method.

1https://github.com/JiaRenChang/PSMNet,
https://github.com/SwinTransformer/MIM-Depth-Estimation,
https://github.com/XuelianCheng/LEAStereo



TABLE III
THE RECALL@1 AND RECALL@1% OF ALL THE METHODS ON THE KITTI DATASET.

Sequence 00 02 05 06 08
recall @1 @1% @1 @1% @1 @1% @1 @1% @1 @1%

MIM-Points 53.3 71.6 6.9 57.1 14.8 68.3 20.0 44.4 12.5 68.6
PSM-Points 58.0 72.3 8.2 53.6 16.0 71.1 32.1 50.0 14.7 75.0
LEA-Points 58.8 72.6 9.1 61.3 21.8 80.0 31.6 71.6 18.0 76.3
MIM-I2P 74.3 88.6 46.3 89.7 49.9 89.1 41.9 81.5 42.1 88.4
PSM-I2P 81.7 97.4 47.6 92.9 63.8 94.1 52.1 88.5 53.5 92.1
LEA-I2P 92.6 99.7 77.0 98.4 83.4 98.8 55.5 91.5 69.4 96.4

Fig. 3. The Top-N recall rate on the KITTI dataset.

Fig. 4. The Top-1 recall with respect to different thresholds on seq 00.

C. Better Depth Estimation, Finer Place Recognition

We further test our method using more depth estimation
algorithms, among which the estimation accuracy of MIM-
Depth, PSM-Net, and LEA-Stereo increases sequentially.
Table III shows the recall rates at Top-1 and Top-1% on
KITTI. It can be seen that our I2P method with the BEV
representation outperforms the points-based methods, and
it shows better generalization ability. It is noted that, for
all the I2P methods and points-based methods, the recall
rates are positively correlated with the depth estimation
accuracy. However, the performance of the I2P methods
improves significantly as the accuracy of depth estimation
increases, while the enhancement in points-based methods is
not obvious. For a more comprehensive demonstration of the
performance of our I2P method, we show the recall rate at
Top-N in Fig. 3. It can be seen that I2P-Rec achieves higher
recall rates on all the sequences.

We also explore the sensitivity of the performance of
different methods to the ground truth thresholds. Fig. 4 shows
the recall@1 when the threshold varies from 5m to 50m.
It can be seen that our I2P method can maintain a high
recall@1 regardless of the varying thresholds.

(a) KITTI

(b) MAPO

Fig. 5. Two sample images from KITTI and MAPO dataset.

TABLE IV
PERFORMANCE OF MIM-I2P ON THE MAPO DATASET.

Recall@1 Recall@1%
Trained on KITTI 41.8 75.4
Refined on MAPO 57.3 91.4

D. Performance on MAPO dataset

The MAPO dataset is collected along a bike route, making
it inherently challenging due to potential occlusion caused by
nearby trees. Fig. 5 shows two images from the MAPO and
KITTI datasets, respectively. Table IV shows that MIM-I2P
achieves a Top-1 recall rate of 41.8% using the model trained
on sequence 00 of KITTI, validating its strong generalization
ability. After the refinement, the recall rate at Top-1 and Top-
1% improves to 57.3% and 91.4%, respectively.

V. CONCLUSION

In this work, we propose a cross-modal place recognition
method called I2P-Rec that can localize images on large-
scale point cloud maps. We leverage the depth estimation
algorithms to recover point clouds from images to eliminate



the modal difference. We further perform BEV projection
for global feature extraction. Although the strategy of our
method is simple, it is quite effective and has good gener-
alization ability as the experiments conducted on the KITTI
and the MAPO dataset show. In our future work, we will
design more effective modality transformation algorithms to
boost the performance of our method. We also plan to build
a real-time visual localization system working on large-scale
point cloud maps.
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