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ABSTRACT

Multispectral imaging has attracted much interest in color sci-

ence area, for its ability in providing much more spectral in-

formation than 3-channel color images. Due to the huge data

volume, it is necessary to compress multispectral images for

efficient transmission. This paper proposes a framework for

spectral compression of multispectral image by using cluster-

adaptive subspaces representation. In the framework, mul-

tispectral image is initially segmented by hierarchical anal-

ysis of the transform coefficients in the global subspace, and

then ambiguous pixels are identified and classified into proper

clusters based on linear discriminant analysis. The dimen-

sionality of each adaptive subspace is determined by specified

reconstruction error level, followed by further cluster splitting

if necessary. The efficiency of the proposed method is verified

by experiments on real multispectral images.

Index Terms— Multispectral image, compression, clus-

tering, PCA, LDA

1. INTRODUCTION

In color science area, multispectral imaging has been ex-

tensively studied recently due to its ability in high-fidelity

color reproduction, which is of wide applications in textile,

medicine, digital archives, etc. While multispectral image

makes it possible to reproduce accurate colors under various

illuminations, its huge data volume needs to be compressed

for efficient transmission via internet/intranet.

The compression of multispectral image is possible as the

spectral reflectances of object surfaces are highly correlated,

and hence can be represented by the linear combination of

a few eigenvectors [1]. These eigenvectors, which can be

obtained by principal component analysis (PCA) [2], span a

subspace with dimensionality lower than that of reflectance.

The spectral reduction with this low-dimensional subspace

is actually the essence of multispectral image compression.

Straightforwardly, eigenvectors are computed in a global
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manner from the whole multispectral image. When there is a

need to balance spectral and colorimetric accuracy, eigenvec-

tors can be calculated by proper weighting [3].

An image usually consists of clusters (or equivalently, re-

gions), in which pixels have similar reflectance characteris-

tics. Due to this similarity, the subspace dimensionality of a

cluster can be lower than that of the whole image. In this re-

gard, Kaarana et al [4] and Cagnazzo et al [5] classified pixels

into regions according to spectral similarity, and compressed

the regional-spectrum individually. Chang [6] divided mul-

tispectral satellite image into eigenregions. As eigenregions

are obtained by analyzing the similarity of eigenvectors of ad-

jacent image blocks, the computation is quite expensive.

This paper proposes an efficient framework for adaptive

spectral compression of multispectral images. In the frame-

work, the global subspace of the image is first calculated,

based on which initial segmentation is conducted. The am-

biguous pixels, which are identified by posterior probabil-

ity, are then classified into proper clusters by linear discrimi-

nant analysis (LDA) [2]. The dimensionality of each cluster-

adaptive PCA subspace are determined under the specified

spectral error level, with further cluster splitting if necessary.

Experiment was conducted to evaluate the performance of

spectral compression. The encoding of cluster map and trans-

form coefficients is not considered in this paper.

2. BASICS OF MULTISPECTRAL IMAGE

In this study, the multispectral images are acquired by a

monochrome digital camera, accompanied by 16 narrow-

band filters covering the visual spectrum. The camera re-

sponse is the product of reflectance and spectral responsivity

of the imaging system, with additive imaging noise. The

reflectance of the imaged object is reconstructed from camera

responses by Wiener estimation [7].

Hereafter, we refer multispectral image as the image con-

taining spectral reflectance data, not the original camera re-

sponses. Reflectance is denoted by column vector r ∈ RN×1,

with N = 31. To keep data precision, 2N bytes are used to

store a float-format reflectance. Hence, for a multispectral
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image with L pixels, the overhead storage in bytes is

Q0 = 2NL. (1)

3. GLOBAL PCA-BASED COMPRESSION

For global PCA-based multispectral compression, PCA is ap-

plied on the whole image to obtain the global subspace. Let rl
be the reflectance of the lth (1 ≤ l ≤ L) pixel, the covariance

matrix is

C =
1

L

L∑
l=1

(rl − r)(rl − r)T. (2)

where r ∈ RN×1 is the mean reflectance of the image. It is

clear that matrix C ∈ RN×N is semi-definite. By singular

value decomposition,

UΛUT = C, (3)

where matrix U ∈ RN×N consists of eigenvectors uj ∈
RN×1, (1 ≤ j ≤ N), and diagonal matrix Λ ∈ RN×N con-

tains the corresponding eigenvalues λj . Due to the high corre-

lation, reflectance can be represented by a subspace spanned

by a small number, D0(1 ≤ D0 ≤ N), of eigenvectors,

r =

D0∑
j=1

ajuj + r. (4)

Accordingly, the overhead storage of the global PCA-

based compression method is

QG = 2D0L+ 2D0N. (5)

The first and second terms on the right hand side represent

the overheads for coefficients and eigenvectors, respectively.

Accordingly, the compression ratio (CR) is computed as

ηG = Q0/QG. (6)

4. PROPOSED FRAMEWORK

The basic idea of the proposed framework is to separate

multispectral image into K clusters which contain similar

reflectances, and then compress these reflectances by the

cluster-adaptive subspaces. As K is less than 255 for the

multispectral image in this study, the cluster label of a pixel

can be represented by one byte. If the kth cluster contains

L(k) pixels and the dimensionality of the corresponding sub-

space is D(k), the overhead storage is

Q(k) = 2D(k)L(k) + 2D(k)N + L(k), (7)

where the first and second terms on the right hand side are

similar to those in Eq. 5, and the storage of pixel labeling is

equal to L(k). Then the total overhead storage for all clusters

is

QA =
K∑

k=1

Q(k) = L+ 2
K∑

k=1

D(k)(L(k) +N), (8)

and the CR is calculated as ηA = Q0/QA.

4.1. Initial segmentation

The fundamental issue of cluster-adaptive image compression

is to separate the image into different non-overlapping re-

gions. However, the direct segmentation of a high-dimensional

image is a difficult problem, especially when the number of

regions are not known a priori. The initial segmentation is in-

spired by hierarchical histogram analysis, which is originally

used for color image segmentation [8].

By projecting the reflectance data to the global PCA sub-

space, as shown in Eq. 4, transform coefficient aj is obtained

for each pixel. Then aj is scaled into the range [0, Sj ], with

Sj being determined as

Sj =

⌊
100

log10(
λ1

λj
)

⌋
, (9)

where the operator �·� rounds variable to the nearest lower

integer.

By this manipulation, the coefficients form a N dimen-

sional byte-type image. It is known that, for an 1-dimensional

image, its histogram approaches probability distribution when

pixel number is large and noise can be neglected. However,

it is not the case in hierarchical histogram analysis as some

regions may contain only a few pixels. In this regard, the hi-

erarchical histograms are constructed by using kernel density

estimator [9]. In this work the Gaussian kernel is used.

The procedure of image segmentation based on hierarchi-

cal kernel histogram is listed as follows:

(1) Set dimension index j = 1, region number K = 1, and

regard the image as one region;

(2) On the jth dimension, construct the kernel histogram

for each of the K regions and further separated it into

proper regions by peak-valley searching;

(3) Update K and set j = j + 1;

(4) Repeat (2) and (3) if regions can be further separated;

otherwise stop iteration, and set segmentation dimen-

sionality d = j.

4.2. LDA-based ambiguous pixel classification

It is known that PCA is powerful in representing data, but is

not optimal in discriminating data [2]. This means that the ini-

tial image segmentation may classify some ambiguous pixels,

i.e., those in region boundaries, into wrong regions. To solve

this problem, we first identify ambiguous pixels and then per-

form classification by LDA.

The ambiguous pixels are identified by the comparison of

posterior probability. Let a ∈ Rd×1 be scaled coefficient of

a pixel, μk ∈ Rd×1 and Σk ∈ Rd×d be the mean vector and

covariance matrix for the kth region, respectively, then the

posterior probability that the pixel belongs to the kth region

is calculated as

p(k|a) ∝ p(a|k)p(k) = L(k)

L
g(a|μk,Σk) (10)
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where g(·) is multivariate normal density, and L(k) is the

number of pixels in the kth region.

Suppose that, for a pixel, k0 is the region with maximum

posterior probability. This pixel is judged to be unambiguous

only if the following inequality is satisfied:

p(k0|a) > β · p(k|a), ∀ k �= k0, (11)

where parameter β controls the ambiguous level. Our inves-

tigation indicates that β = 2 is appropriate.

In LDA, the unambiguous pixels are employed for train-

ing and the ambiguous pixels are for classifying. Let SB ∈
RN×N and SW ∈ RN×N be the between-class and within

scatter matrices of the reflectance data, respectively, the op-

timal discriminant matrix Φ ∈ RN×(K−1) is calculated by

minimizing

J(Φ) =
ΦTSBΦ

ΦTSWΦ
, (12)

which is actually a generalized eigenvalue problem [2]. By

projecting reflectances on to the subspace spanned by the col-

umn vectors of Φ and then applying 1-NN algorithm, the am-

biguous pixels are properly classified.

Fig. 1. Four of the multispectral images used in the experi-

ments, illustrated in color for visualization.

4.3. Dimensionality

In color science, the difference between reflectance r and its

reconstructed counterpart r̂ is usually evaluated by the spec-

tral root-mean-square (rms) error defined as

ε =

[
(r− r̂)T(r− r̂)

N

] 1
2

. (13)

In cluster-adaptive compression, we need to determine the

dimensionality D(k) of each subspace under the required im-

age quality that specified by rms error level. In practice, this

is reached in a reversed manner, by calculating rms errors un-

der various dimensionality for each cluster [1]. It is noted

that this procedure actually involves the decompression pro-

cedure under different dimensionality, and is computational

expensive. Fortunately, our investigation indicates using only

20% uniformly sampled pixels are adequate to get the reliable

distribution between rms error and dimensionality.

4.4. Cluster splitting

It is possible that, under specified rms error level, the needed

dimensionality for a certain cluster may be much larger than

other clusters. To improve compression efficiency, we further

check if further cluster splitting is necessary.

Suppose that region k is divided into two regions, i.e., k1
and k2, then the storage overhead after splitting is

Q(k1,k2) = L(k) + 2(D(k1) +D(k2))(L(k) +N). (14)

It is expected that the needed coefficient overhead after split-

ting may be less than the original one, but the cost of eigen-

vector overhead will increase. Hence we apply cluster split-

ting only when Q(k) > Q(k1,k2).

5. EXPERIMENTS

In the experiment we used about 20 multispectral images of

knitting and printing textile fabrics, each with 512× 512 pix-

els. Four of these images, namely A, B, C, and D, are illus-

trated in Fig. 1. The compression efficiency of the global

compression method and adaptive compression method (in-

cluding initial segmentation and LDA clustering) are evalu-

ated. In the adaptive method, the average dimensionality is

calculated as DA =
∑K

k=1
L(k)

L D(k).

The distributions of peak signal-noise ratio (PSNR) and

spectral rms error with respect to subspace dimensionality are

shown in Fig. 2. When the dimensionality of subspaces be-

comes large, more variance in reflectance data can be repre-

sented by PCA. This results in the increase of PSNR and de-

crease of rms error when the dimensionality becomes high. It

is obvious that the the adaptive method performs significantly

better than the global one, in terms of both PSNR and rms er-

ror metrics. The improvement of LDA-clustering in the adap-

tive method over initial segmentation is also obvious. This

improvement is obtained by the ability of LDA in classifying

ambiguous pixels.

CR, which is related to number of clusters and dimension-

ality of subspaces, is an important metric for a compression

method. Table 1 shows CRs of the two compression meth-

ods under different spectral rms error levels. The magnitude

of CR is related to the spectral characteristics of the multi-

spectral image. For example, as the colors in image B are not

as distinct as in image A, more clusters and higher subspace

dimensionality are needed in compression, which results in a

lower CR for image B. It is clear that the CRs of the adaptive
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Fig. 2. Distributions of PSNR (top) and spectral rms error

(bottom) with respect to subspace dimensionality for image

A.

method are higher than that of the global method. Under rms

error level 0.01, the improvement of LDA clustering over ini-

tial segmentation is about 0.2 to 0.4; while under level 0.002,

the improvement is not so large.

6. CONCLUSIONS

This paper proposes a cluster-adaptive method for the com-

pression of multispectral images. The image is first initially

segmented into regions by global PCA, and then ambiguous

pixels are classify into proper clusters via LDA. Experimental

results indicate that the cluster-adaptive method outperforms

global method in terms of both PSNR and spectral rms error

metrics. The improvement by LDA classification is obvious

when compared with initial segmentation. To further improve

compression efficiency, our future work will be investigating

new algorithms for both region-separation and encoding of

subspace-transform coefficients.
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