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Surface reconstruction from gradient fields is a fundamental problem to
shape from shading and photometric stereo. Proposed is a surface
reconstruction method that is robust to both noise and outliers. The
reconstruction problem is formulated to linear decoding in compressed
sensing, by assuming the outliers are sparsely distributed. A Laplacian
term is additionally employed to increase information in the construc-
tion matrix and suppress noise and/or outliers. Experimental results
validate that the proposed method significantly outperforms the state
of the art, and can produce satisfactory reconstruction even in the
very extreme situation of 60% outliers.

Introduction: Shape from gradient fields has a long research history in
computer vision, and is the final step for many applications involving
gradient manipulation and estimation. When the input data is cor-
rupted by noise and outliers, it could not be directly integrated. The
traditional methods solve the reconstruction problem under the least
squares sense, and are suitable to Gaussian noise polluted data. To
handle outliers, Reddy et al. [1] proposed a confining method that
detects the sparse errors produced by a curl operator in advance,
and then integrates using least squares. This method stops the influ-
ence of outliers from spreading but could not annihilate them
completely.

Recent work [2] shows that compressed sensing is powerful in remov-
ing sparsely distributed salt-andpepper noise from images, using basis
pursuit [3]. Candes and Tao [4] extend the basis pursuit by introducing
a linear decoding strategy to handle the linear error correcting problem
with ℓ1 minimisation. The observed codeword is generated by multiply-
ing a construction matrix to an input message. It is proved that the
message can be exactly recovered even when the codeword is corrupted
by a large number of outliers, providing that the construction matrix
satisfies the adjoint uniform uncertainty principle (UUP).

In this Letter, the surface integration is formulated to the error correct-
ing problem, and the corrupted surface can be recovered using ℓ1 mini-
misation. By further adding a Laplacian term in the construction matrix,
we increase the information for decoding and suppress noise simul-
taneously. The proposed method can reconstruct surfaces robustly in
the existence of severe outlier corruption, even when the adjoint UUP
is not satisfied.

Proposed method: Measured surface is usually organised in the range-
image form, which can be written in terms of depth function z ¼ f (x, y),
where x and y are Cartesian co-ordinates. The gradient fields of f (x, y) are
given by finite difference form as

zx(x, y) = z(x + 1, y) − z(x − 1, y)
2

zy(x, y) = z(x, y + 1) − z(x, y − 1)
2

(1)

which can be written in its matrix-vector notation as

zx

zy

( )
= Dz (2)

where z denotes the stacked depth values in vector form, zx and zy are
stacked gradient vectors, and D denotes the gradient operator matrix.
Each row of D has two nonzeros entries, namely +0.5, in the positions
corresponding to the particular difference operation. Equation (2) can be
treated as a gradient linear encoding operation, which translates depth to
gradient fields.

We additionally construct the popular Laplacian kernel for the surface as

0 1 0
1 −4 1
0 1 0

⎛
⎝

⎞
⎠ (3)

and consequently change the convolution operation to its matrix form

Laplacian(z) = Lz (4)

where Laplacian(.) denotes finite difference Laplacian operator. Each
row of L has five nonzero entries corresponding to the nonzero elements
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in the convolution kernel (3). We treat the minimisation of the surface
Laplacian as a regularisation term and incorporate it in the objective
function

ẑ = arg min ‖g0 − Az‖1 (5)

where ẑ denotes the solution of depths, g0 is the observed stacked gra-
dient data incorporated with 0 vector (corresponding to the minimisation

of surface Laplacian), and A = D
lL

( )
is the construction matrix, with l

being the weight of the regularisation term. The objective function (5)
can be formulated as a linear programming problem, which can be
effectively solved using convex optimisation [5].

Results: Experiments were conducted to evaluate Reddy’s method [1]
and the proposed method. In both methods, we all assume Neumann
boundary conditions for integration. Our investigation indicates that
the proposed method is insensitive to parameter l and therefore we
fixed l ¼ 0.3 hereafter. In the experiment, the noise was assumed to
be additive Gaussian determined with variance s2. The outliers can
be either additive or multiplicative. In the case of an additive outlier,
the corrupted gradients become z′a = za + { − 10, 10}, where
a [ {x, y}, and in the case of a multiplicative outlier,
z′a = za { − 10, 10}. Fig. 1 shows the reconstruction results of Peak
surface when the gradient fields are corrupted by multiplicative out-
liers. It is observed that Reddy’s method can annihilate partial outliers
and confine the influence of outliers in the case of 10% corruption, but
completely fails in the case of 40% corruption. This is because the
large corruption makes the curl operation in Reddy’s method hard to
detect all outliers in integration loops. In comparison, the proposed
method removes all outliers and produces a perfect target surface
when there are 10% outliers, and still performs quite satisfactorily
when an outlier becomes more severe. Fig. 2 illustrates the root
mean square error (RMSE) of the reconstructed surfaces with respect
to different outlier percentages. As shown, in both cases of additive
and multiplicative outliers, the errors of Reddy’s method increase dra-
matically when the outlier percentage becomes large. Instead, the pro-
posed method keeps high accuracy and is very stable, even when the
gradient data contain 60% outliers. Fig. 3 shows the reconstruction
results of Mozart and Vase surfaces when the gradients are simul-
taneously corrupted by Gaussian noise (s ¼ 0.1) and 20% additive
outliers. Again, the proposed method produces satisfactory surface
reconstruction, while Reddy’s method fails.
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Fig. 1 Reconstruction of Peak surface when gradient fields corrupted by
multiplicative outliers

a Ground truth normal map
b Ground truth depth
c Normal map with 10% positions corrupted
d Reconstruction of Fig. 1c by Reddy’s method
e Reconstruction of Fig. 1c by proposed method
f Normal map with 40% positions corrupted
g Reconstruction of Fig. 1f by Reddy’s method
h Reconstruction of Fig. 1f by proposed method
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Fig. 2 Reconstruction error with respect to outlier percentage for Peak
surface

a Additive outliers
b Multiplicative outliers

a b c d

Fig. 3 Reconstruction of Vase and Mozart surfaces when gradient fields
corrupted by both noise and additive outliers

a Ground truth depths
b Normal maps corrupted by both outliers (20% positions) and noise (s ¼ 0.1)
c Reddy’s method
d Proposed method

Conclusion: We have proposed a robust method to recover depths from
gradient fields. We first formulated surface reconstruction to the gradient
decoding problem, and then employed a Laplacian term to increase the
information in the construction matrix and suppress noise/outliers at the
ELECTRON
same time. The experimental results verified that, even when the outlier
corruption is extremely severe, the proposed method can still produce
satisfactory surface reconstruction.
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