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A multispectral imaging system, after necessary calibration, can measure the spectral reflectances of colour
samples accurately at a high spatial resolution. A limitation is that agreement of its measurements with those
of a reference spectrophotometer is affected by the reflective characteristics of sample materials. The state-
of-the-art methods aim to improve interinstrument agreement using the spectral values of neighbouring
bands. However, it is observed that non-neighbouring bands are more effective in modelling interinstrument
agreement. Inspired by this observation, the present paper proposes a method for eliminating material
dependency by least-squares regression among non-neighbouring spectral bands. The fundamental issue of
band selection is solved using a binary differential evolution algorithm. Experimental results confirm that the
proposed method is effective in reflectance correction in terms of both spectral and colorimetric accuracy.
The method is of practical application to multispectral imaging systems when measuring the spectral
reflectances of colour samples with different materials.
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Introduction
Nowadays, multispectral imaging is attracting intense
interest owing to its unique ability to measure colour
spectra at a high spatial resolution. Its operating principle is
to divide the visible spectrum into more than three bands
and transform camera response to spectral reflectance.

Figure 1 illustrates a typical multispectral imaging
system that consists of a monochrome camera and a filter
wheel installed with a set of filters. The lighting direction
is 45° with respect to the sample surface normal, and the
viewing direction coincides with the surface normal. This
is in accordance with the CIE recommended 45°/normal
geometry. The multispectral imaging system is calibrated
using calibration samples such that its reflectance mea-
surement agrees with a reference spectrophotometer. As
we know, a high-precision spectrophotometer usually
adopts the diffuse/8° geometry, in which the diffuse
illumination is produced by an integrating sphere. Owing
to the different geometries, the interinstrument agreement
will be affected by the reflective characteristics (e.g. gloss)
of the samples. Figure 2 illustrates two slices of bidirec-
tional reflectance distribution functions (BRDFs) [1] of two
materials, A and B, at a given lighting direction. These two
materials have only diffuse reflection, but the reflective
characteristics are obviously different. Because of this, if
the multispectral imaging system is calibrated using
samples with material A, its measurement agreement with
the spectrophotometer will degrade when measuring sam-
ples with material B.

The problem of material influence in colour imaging has
been noted in previous work [2,3]. Although it is possible to
eliminate material dependency [4] by adjusting the
calibration transform, in this work we simply regard the

multispectral imaging system as a colour measurement
instrument without knowing its calibration details. With
this treatment, material dependency elimination is similar
to interinstrument agreement improvement [5–8].

In the literature, several methods have been proposed to
improve the interinstrument agreement. For example, Berns
and Petersen [5] derived a generic model that has seven
terms. These terms include the offset, band value, first- and
second-order derivatives of band value, quadratic band
value, and two non-linearly scaled derivatives of band
value. Rich and Martin [6] simplified this generic model to
avoid possible overfitting by using four terms, i.e. the offset,
band value, and its first- and second-order derivatives.
Reniff [7] also modified the Berns and Petersen model [5] by
incorporating high-order reflectance factors. Chung et al.
[8] introduced the R-model with four terms, which are the
offset, band value, and forward and backward neighbouring
band values. It has been shown [9], that with a proper
mathematical manipulation, the R-model is equivalent to
the Rich and Martin model [6]. A recent comprehensive
review indicates that the three-band R-model is the most
reliable method to date [9]. It is worth noting that all the
mentioned methods improve the interinstrument agreement
based on fixed neighbouring bands.

In this paper, we observe from experiment that the non-
neighbouring bands are more effective in eliminating
material dependency, or equivalently, improving interin-
strument agreement (see the ground truth correction matri-
ces in Figure. 5). This indicates that the neighbouring band
constraint employed in the state-of-the-art methods is too
restrictive and actually not necessary. Motivated by this, we
propose a novel method for modelling material dependency
by applying least-squares regression on non-neighbouring
bands. The fundamental issue of band selection is effi-
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ciently solved by using a novel binary differential evolution
algorithm. The reliability of the proposed method is
evaluated using two different materials, i.e. textile Pantone
samples and printed paper samples. To our knowledge, this
is the first work that aims to eliminate material dependency,
or improve interinstrument agreement, by using non-
neighbouring spectral bands.

Background
In the following, we briefly review the principle of multi-
spectral imaging and reflectance reconstruction. Assume the
visible spectrum, whose wavelength range is usually from
400 to 700 nm in practical computation, is divided into N
samples, and the multispectral imaging system contains C
channels. In this work, N = 31 and C = 16. According to the
imaging model, the camera response u 2 RC of a sample with
spectral reflectance r 2 RN is formulated as

u ¼ Mrþ n ð1Þ
where n denotes imaging noise. The matrixM is the spectral
responsivity of the system, which combines the spectral
power distribution of the illuminant, the spectral transmit-
tance of the filter, and the spectral sensitivity of the camera.
A fundamental issue in multispectral imaging is to compute
the spectral reflectance s from the camera response u via a
calibration transform W such that

s ¼ Wu ð2Þ
is a close replica of r. The matrix W can be computed using
various techniques such as least squares, finite-dimension
modelling [10], or Wiener estimation [10,11]. In the
calibration process, the spectral reflectance r is measured
using a reference spectrophotometer.

To eliminate material dependency, our objective is to find
a correction matrix A that maps the reflectance s measured
by the multispectral imaging system to the reflectance r
measured by the spectrophotometer. Mathematically, the
correction process is formulated as

r ¼ A~s ð3Þ
where ~s ¼ ðsT; 1ÞT is an augmented version of s, and
consequently A is of dimension N 9 (N + 1), with its last
column referred to as the offset vector.

In the R-model [8], the correction of band value r(n) is
conducted on three neighbouring bands:

rðnÞ ¼ an�1sðn� 1Þ þ ansðnÞ þ anþ1sðnþ 1Þ þ a0 ð4Þ
Suppose L training samples are available in the correc-

tion process, the coefficients an-1, an, an+1, and a0 can be
computed using least squares. By writing the coefficients of
all N bands together, the correction matrix of the R-model
becomes

AR�model ¼

a11 a12 0 0 . . . 0 0 0 a10

a21 a22 a23 0 . . . 0 0 0 a20

0 a32 a33 a34 . . . 0 0 0 a30

. . . . . . . . .
0 0 0 0 . . . 0 aN;N�1 aN;N aN0

0
BBBB@

1
CCCCA

ð5Þ
As observed, it has non-zero elements only in neighbouring
bands.

From the perspective of linear regression, the essence of
the R-model [8] and the relevant methods [5–7] is to model
the relationship between a scalar dependent variable r(n)
with several explanatory variables that are empirically
fixed in neighbouring bands. The problem is that, although
these predetermined explanatory variables produce low
regression error, they are still not the optimal ones in
explaining the dependent variable. In this regard, we aim
to find the explanatory variables that have better
explanation capability by breaking the neighbouring band
limitation.
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Figure 2 BRDF slices of two materials (A and B) in the incident plane [Colour figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 1 Schematic diagram of a typical multispectral imaging
system [Colour figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Proposed method
The proposed non-neighbouring band regression method
will be elaborated as follows. In the following, we first
consider the modelling of the specific nth band (1 ≤ n ≤ N).
To apply the binary differential evolution algorithm, we
define a binary row vector x 2 RN for the nth band as

x ¼ ð 0 1 0 0 1 . . . 0 1 0 Þ ð6Þ
In vector x, a bit value 1 indicates that the corresponding

band is selected, and otherwise unselected. If K bands are
involved in computation, x will contain K bits with value 1.

In addition to the selected bands specified by vector x, we
also use an offset in the proposed method. Let ~x ¼ ðx; 1Þ be
the augmented version of x, and an be the nth row vector of
matrix A specified in Eqn (3), then the row vector

~anðxÞ ¼ andiagð~xÞ ð7Þ
contains the K + 1 non-zero elements of an. Here diag(�)
transforms a vector to its diagonal matrix counterpart.

To correct the nth band of the reflectance, the objective
function is defined as the total regression error on L training
samples:

fnðxÞ ¼
XL
i¼1

~anðxÞ�si � riðnÞð Þ2 ð8Þ

where ri(n) is the value of band n and �si 2 RKþ1 are the
selected band values of the augmented reflectance defined
in Eqn (3). To find the optimal bands, we need to find the
vector x that minimises the objective function given in
Eqn (8).

In the binary differential evolution algorithm, let NP be
the number of individuals in the population, and G be the
maximum number of generations, then xg,i denotes the ith
individual in the gth generation. For our problem, the
number of bits with values 1 in vector x should be kept as K
in the evolution procedure. We define the difference
between two randomly selected candidate vectors, xg,i and
xg,j, as a table of swapping pairs with bit values 0 and 1:

Tij ¼ xg;i � xg;j ð9Þ
where the binary-cross operator ⊗ produces the indices of

swapping pairs in Tij. For example, Tij ¼ 1 7 13
3 10 14

� �
means that (1,3), (7,10), and (13,14) are three swapping
pairs.

In the mutation operation, a trial vector vg,k is generated as

vg;k ¼ xg;k � Tij ð10Þ
where the binary-plus operator ⊕ swaps the bit values of
the indices of xg,k according to the swapping pairs specified
in table Tij.

In the selection operation, the trial vector vg,k competes
with the current solution xg,k according to the objective
function (8), and the solution vector passing to the next
generation is determined as

xgþ1;k ¼ vg;k if fnðvg;kÞ\fnðxg;kÞ
xg;k otherwise:

�
ð11Þ

The binary differential evolution algorithm repeats the
above mutation and selection operations in each generation,
and the final optimal solution is determined as

xopt ¼ argmin fnðxG;kÞ; k 2 f1; 2; . . .; NPg ð12Þ
Note that the xopt is optimal for the nth band. By

applying the binary differential evolution algorithm on all
N bands, we can obtain the correction matrix A whose
non-zero elements are determined by N optimal solution
vectors.

In the binary differential evolution algorithm, we set the

number of individuals NP ¼ N
K

� �1=3
" #

, where N and K are

the numbers of total and selected bands, and the operator
[ � ] rounds the variable to its nearest integer. The initial
individuals are randomly generated. Our investigation
indicates that the algorithm always converges in fewer than
20 generations, irrespective of population initialisation.
Figure 3 illustrates the distribution of spectral root mean
square (rms) error with respect to the number of generations
for a certain population initialisation. The convergence
distributions for other population initialisations are similar.
Based on this observation, we set the maximum number of
generations G = 20.
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Figure 3 Distribution of spectral rms errors with respect to the
number of generations of the binary differential evolution algorithm
[Colour figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 4 Distributions of spectral rms errors with respect to the
number of spectral bands for the proposed method [Colour figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Experiments
Themultispectral imaging system includes a 14-bit scientific
monochrome camera and a filter wheel installed with 16
narrowbandfilters. A set of tungsten lampswere employed to

illuminate the samples uniformly at the 45° direction. In
terms of CIEDE2000 colour difference DE00 [12], the current
colorimetric accuracy of the multispectral imaging system is
around 0.3 units, and the repeatability accuracy is 0.05 units.
We consider the system approximately meets the require-
ment of a colour measurement instrument.

Three sets of samples with different materials were used,
including (a) 96 colours on the X-Rite Digital ColorChecker
SG (X-Rite, Inc., USA), which are referred to as SG samples
hereafter, (b) 144 randomly selected textile Pantone sam-
ples, and (c) 108 paper samples printed using a six-ink
EPSON colour printer (Stylus Photo 1390; Epson, Japan).
The spectral reflectance data of all these samples were
measured using a reference Datacolor SF600 spectropho-
tometer (Datacolor, USA). The SG samples were employed
to calibrate the multispectral imaging system, and the
Pantone and paper samples were employed to test the
proposed method. The colour accuracy was evaluated using
CIEDE2000 colour difference under typical CIE illuminants
(A, D65, and F2), as well as spectral rms error defined as

e ¼ 1ffiffiffiffi
N

p jjr� A~sjj2 ð13Þ

where N is the number of bands.

(b)

(a)

R-model Proposed Ground truth

R-model Proposed Ground truth

Figure 5 The N 9 N submatrices of the correction matrices A, excluding the offset vector, for (a) Pantone and (b) paper materials. The non-
zero elements are filled in black
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Figure 6 Distributions of spectral rms errors with respect to the
number of training samples [Colour figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Table 1 Spectral rms errors of the R-model and proposed method.
Lowest errors are in bold

Material Method

Spectral rms

Mean Median Max

Pantone w/o correction 0.0236 0.0230 0.0597
R-model 0.0055 0.0049 0.0173
Proposed 0.0051 0.0044 0.0169

Paper w/o correction 0.0256 0.0244 0.0539
R-model 0.0044 0.0041 00109
Proposed 0.0038 0.0037 0.0093
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The samples in sets (b) and (c) were individually divided
into a subset of training samples and a subset of test
samples. The training samples were sequentially deter-
mined by maximising the condition number, i.e. the ratio
between the maximum and minimum eigenvalues, of the
matrix of selected reflectances [13]. In this way, the training
samples should be representative of the whole sample set.

It is necessary to determine the appropriate number of
bands, K, in the non-neighbouring band regression using
the training samples. Theoretically, the value of K can vary
for individual bands. Our investigation reveals that using
varying K values produces a minor improvement in spectral
accuracy but does not yield better colorimetric accuracy.
This is because of the non-linear relationship between the
spectral and colorimetric metrics. Therefore, we used the
same value of K for all bands in the proposed method.

Figure 4 shows the distributions of spectral rms errors
with respect to the number of spectral bands in the case of
using L = 12 training samples. For both Pantone and paper
materials, we obtain the lowest spectral errors when K = 3.
The use of more bands will degrade the spectral accuracy
owing to overfitting.

Figure 5 illustrates the patterns of selected bands of the
N 9 N submatrix of the correction matrix A, excluding the

offset vector. There are K = 3 selected bands in each row of
the submatrix. The ground truths are obtained from the
training and test samples by exhaustive search of the bands.

More clearly, in total
31
3

� �
, combinations of three bands

were evaluated. For each combination, the correction
matrix A was computed from the training samples, and
the average spectral rms error of the test samples was
computed using this matrix. The band combination that
produces the minimum spectral rms error was regarded as
the ground truth. It can be seen from Figure 5 that the
ground truth bands were sparsely distributed, which is
opposite to the basic assumption of the R-model. Owing to
the binary differential evolution algorithm, the proposed
method can efficiently compute the correction matrix,
which is quite close to the ground truth, from the training
samples.

It is of interest to investigate whether the number of
training samples has an influence on the proposed method.
Figure 6 shows that, for both Pantone and paper materials,
the spectral rms errors decrease when more training
samples are used. It can be seen that the distributions are
quite different for the Pantone and paper materials. Figure 6
shows that, when the number of training samples L is larger
than 12, the proposed method performs better than the R-
model. In the following, we show quantitative results when
using L = 12 training samples. This is a reasonable choice to
use a minimum number of training samples in practical
applications, provided that the required colour accuracy is
satisfied. We note that the distributions of spectral rms
errors can be different when evaluated on samples with
different sizes, but we will not show the details in this
paper.

Table 1 shows the spectral rms errors of the R-model and
proposed method for the test samples. As indicated, without
reflectance correction, the mean spectral rms errors are very
large (0.023) for both materials. The mean spectral rms
errors produced by the proposed method are 0.0051 and
0.0038 for the Pantone and paper materials respectively.
Despite the seemingly slight improvement over the R-
model, the statistical Wilcoxon signed rank test [14]
confirms that the resultant spectral rms errors of the
proposed method are lower than those of the R-model at a
significance level p = 0.01.

Table 2 shows that the resultant mean colour difference
error of the proposed method is around 0.45 units for the
Pantone samples and is below 0.40 units for the paper

Table 2 Colorimetric errors of the R-model and proposed method in terms of CIEDE2000 colour difference under illuminants D65, A, and
F2. Lowest errors are in bold

Material Method

DE00 under D65 DE00 under A DE00 under F2

Mean Median Max Mean Median Max Mean Median Max

Pantone w/o correction 2.14 1.89 5.06 2.08 1.84 5.15 2.14 1.90 5.15
R-model 0.55 0.43 2.67 0.51 0.41 2.21 0.57 0.43 2.67
Proposed 0.45 0.38 2.34 0.45 0.38 1.91 0.42 0.37 1.47

Paper w/o correction 3.04 2.88 6.48 2.89 2.71 6.70 3.16 2.97 6.54
R-model 0.46 0.40 2.85 0.45 0.39 2.75 0.45 0.35 2.02
Proposed 0.38 0.34 1.14 0.37 0.34 1.09 0.40 0.35 1.30
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Figure 7 Distributions of colour difference errors of the R-model
and the proposed method [Colour figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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samples. The maximum errors of the Pantone material are
2.34 and 1.91 units under the D65 and A illuminants
respectively. These large values are produced by a dark
sample whose spectral rms error is actually quite low. This
is because of the non-linear relationship between the
spectral error and the colorimetric error. The statistical test
shows that the proposed method outperforms the R-model
in terms of colorimetric error metric at a significance level
p = 0.01. Figure 7 shows histograms of the CIEDE2000

errors for the Pantone and paper materials under illuminant
D65. These two distributions further verify that the colour
difference errors produced by the proposed method are
lower than those of the R-model.

Figure 8 shows the corrected spectral reflectance curves
of three samples for illustration purposes. For the colour
samples in (a) and (b), the reflectance curves produced by
the proposed method are closer to the actual ones when
compared with the R-model. For the colour sample in (c),
the version corrected by the R-model is more satisfactory.
This observation is consistent with the quantitative results
shown in Tables 1 and 2. The proposed method performs
statistically better than the R-model, but can still produce
less satisfactory results on certain samples.

Figure 9 shows the worst case produced by the proposed
method, which corresponds to a Pantone colour sample.
The spectral rms error of this sample is 0.0169 and the
CIEDE2000 colour difference error is 2.34 units under
illuminant D65. This indicates that the correction matrix
computed from the training samples cannot well explain
the material dependency of this sample. Nevertheless, the
proposed method still produces slightly better reflectance
correction when compared with the R-model.

Conclusions
In this paper, we have proposed a method for eliminating
material dependency in a multispectral imaging system via
non-neighbouring band regression. By employing the
binary differential evolution algorithm, the proposed
method is able to find the optimal reflectance bands and
outperforms the existing method in terms of both spectral
and colorimetric accuracy. As the proposed method does
not involve detailed calibration of the multispectral imaging
system, it can also be employed to improve the interinstru-
ment agreement between spectrophotometers.
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Figure 8 Three examples of spectral reflectance correction by the
R-model and the proposed method. The insets show the parts
highlighted in boxes with dot borders [Colour figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 9 The worst case of spectral reflectance correction by the
proposed method [Colour figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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