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An algorithm of recolouring of polychromatic digital textile printing images is proposed based on the
investigation of texture and colour distribution in different channels and image segmentation. A
polychromatic image is first separated into monochromatic regions based on watershed transformation
in CIELAB colour space. The initial markers are selected by hierarchical histogram analysis to eliminate
the inherent drawbacks of over-segmentation in the watershed algorithm. Then the individual
monochromatic regions can be mapped with different colours to obtain desirable designs. The artefacts
in the boundaries of different regions are reduced by a technique of colour mixing through Gaussian
blurring. The experimental simulation results indicated that the performance of the algorithm was quite
good in both texture and colour fidelity.

Introduction
It is a common practice and very useful for designers to
use existing designs as references for new designs [1].
Traditionally, a designer has to manually paint an image
again using different colours to visualise the colour effect.
Employing a computer aided design (CAD) system can
certainly make the visualisation of the different colour
effects simpler [2]. However, in most cases, only graphic
designs created in the CAD system can be used for this
purpose. It is difficult for a designer to visualise the
different colour effect based on existing physical samples,
such as a printed fabric or a graphic design printed on paper,
etc. To solve this problem, so that a designer can easily
manipulate colours based on an existing image, the
algorithm of recolouring of a polychromatic digital texture
image was developed in this study.

It is difficult to deal with a printed textile fabric since in
most cases it consists of differently coloured regions. In
addition, a textile fabric itself is textured, being plain woven,
twill, single jersey, and so on. Therefore, to recolour a printed
textile design, two obstacles need to be overcome, i.e. the
segmentation of differently coloured regions and the colour
remapping on those separated regions that are textured. Two
algorithms, namely texture image segmentation of poly-
chromatic images and colour remapping on monochromatic
textured regions, were developed in this study to support
the recolouring work.

The study of colour remapping of a texture image in this
work deals with reproducing a colour image with high
fidelity both in colour and texture so that the reproduced
image is perceptually close to the target physical sample.
Using the techniques developed in this work, it is possible
to visualise the final coloured textured pattern before a
print is actually produced. The segmentation involves the
partition of a polychromatic texture image into disjoint
regions such that it is perceptually homogeneous within
each region and inhomogeneous between regions. Texture
and colour are the most important characteristics in textile
fabric images. Although the complicated interaction of

texture and colour was investigated in the areas of texture
synthesis and texture analysis, it is still far from being
satisfactorily solved [3–5]. The study of the recolouring of
a polychromatic texture image is not a trivial task, and the
effects of texture and colour need to be carefully studied.

For image segmentation, there are four main approaches,
namely histogram-based, edge-based, region-based and
hybrid techniques [5]. As the histogram-based technique
does not consider the spatial distribution of pixels, it often
produces unsatisfactory segmentation results for colour
images of natural scenes [5]. The edge-based technique
detects the intensity variation between adjacent pixels and
then regards them as regional boundaries based on an
appropriate threshold decision. The region-based technique
assumes that the values of pixels are very similar for the
same region [6]. In order to obtain satisfactory results, the
homogeneous criterion should be carefully determined [7].
The hybrid technique is a combination of both the edge- and
region-based techniques and therefore can provide improved
segmentation results. The watershed transformation used in
this study is an example of this segmentation category [8–
10]. The watershed transformation is generally applied on
the gradient of an image, and considers the homogeneous
criterion between connected pixels at the same time. In this
current study however, considering there are sometimes no
rapid changes between different regions after the smoothing
of the texture, the watershed transformation is applied on
the difference image instead of the gradient image to produce
better segmentation results. The details of this method are
discussed later in the paper.

Although many studies have been conducted in the
research of texture synthesis, few of them have considered
the problem of colour accuracy of the reproduced images
[11,12]. Hong et al. proposed an approach for on-screen
texture visualisation by assuming that the pixels in the
reproduced image differed only in the luminance and had
the same chromaticity coordinates [13]. Unfortunately, this
assumption is too simplified to apply for the majority of
texture images [14]. Some proprietary products claimed
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that they were suitable for colour mapping of textile fabrics
[15], however, so far, only single colour mapping can be
performed and no study on the accuracy of colour has ever
been published. In this current study, the interaction of
texture and colour was investigated globally and locally to
achieve satisfactory segmentation results and photorealistic
recolouring effects with good colour accuracy for
polychromatic textile printed fabrics were obtained.

Development of the algorithm of colour
remapping
The texture images used in this study were dyed or printed
textile fabrics and they were scanned using an Epson GT-
10000+ flatbed colour image scanner. The fabric samples
consisted of 16 differently woven patterns, and each pattern
was dyed into five colours: green, orange, purple, pink and
turquoise blue. In total, there were 80 monochromatic
texture images. The polychromatic samples were printed
fabrics with different colour ways. All these fabric samples
were scanned at a resolution of 72 dpi so that the obtained
images gave approximately equal visual appearances to those
of the physical samples when viewed at a normal viewing
distance of about 25–30 cm.

The RGB space is the most elementary colour space
available as it directly corresponds to the input/output
signal of imaging devices. For colour images, the pixel
responses of the RGB channels are highly correlated and
not independent [14,16]. According to the calculation
devised in a previous study [14], the average channel
correlation coefficient was found to be as high as 0.85 for
80 monochromatic texture images of textile fabrics. This
high correlation coefficient indicates the existence of
significant redundancy in RGB channels. It also indicates
the possibility of deducing spatial distribution from one
channel to another. This channel correlation is the
precondition of the algorithm of colour remapping.

If mn(p) denotes the response of the pixel p in channel n,
the deviation ∆mn(p) can be calculated according to Eqn 1:

∆m p m p mn n n( ) ( )= − (1)

where —mn is the average value of channel n (n = 1,2,3 or
RGB, equivalently). It was found that the ∆mn(p)
distribution between any two different channels were
linearly proportional, which means that a pixel contains
proportional amounts of redness ∆m1(p), greenness ∆m2(p)
and blueness ∆m3(p). The relationship between the pixel
deviations for two channels of a typical texture image is
illustrated in Figure 1. It can be seen that the pixel
deviations form a straight-line passing through the origin.
This means that it is possible to calculate the deviation of
one channel (i.e. redness) from those of other channels
(greenness and blueness) [14].

In a simplified case, it can be assumed that the deviation
∆mn(p) is unrelated to mean colour mn. In this case, if we
want to recolour a texture image with a target mean colour
(m1′,m2′,m3′), the new colour of pixel p can be simply
calculated as [m1′ + ∆m1(p), m2′ + ∆m2(p), m3′ + ∆m3(p)].
However, in a real situation ∆mn(p) is related to mean colour
mn [14], therefore, the new pixel deviation ∆mn′(p) should
be calculated for different target mean colours. In this
study, ∆mn′(p) is calculated by linear interpolation using
∆mn(p) and mn (n = 1–3). More precisely, for pixel p, a
term of proportionality δ(•;p) can be defined to describe the
colour deviation in each channel with respect to a new
target mean colour in the recolouring process, the value of
which can be calculated by linear interpolation using the
existing inter-channel information. As there are various
texture regions, a further term g(•) is used to describe the
texture strength for the region under consideration, and
then the new colour (mn

c) for pixel p can be calculated
according to Eqn 2.

m m p m g m m m p pn
c

n n n n n( ) ( ) ( ( ); )′; ′ ′ ′= + × +δ ∆ (2)

For a monochromatic texture image, g(•) is a constant
equal to 1.0, and for a polychromatic image, the term g(•)
is relative to the statistical characteristic of the texture
image, which will be discussed in the following section.
As the target response mn′ may differ to the original mean
colour mn, the term of proportionality δ(•;p) can be
calculated using linear interpolation (Eqn 3, below) where
mn(p) is sorted in ascending sequence. A typical shape of
δ(•;p) is shown in Figure 2. The value of δ(•;p) is clipped
into ∆m1(p) and ∆m3(p) at the two ends, respectively, to avoid
errors caused by extrapolation. In-between m1(p) to m3(p),
the proportionality given in Eqn 3 applies.
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Figure 1  Relationship between pixel deviations for blue and
green channels of a typical texture image

δ( ; )

( ) ( )

( ) ( )
( ) ( )

( )

x p

m p x m p

m p m p
m p m p

x m p m

=

≤ ≤

−
−

−[ ]+

∆

∆ ∆
∆

1 1

1 2

1 2
2

0

22 1 2

2 3

2 3
3 3

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

p m p x m p

m p m p
m p m p

x m p m p

< ≤

−
−

−[ ]+∆ ∆
∆ mm p x m p

m p m p x

2 3

3 3 255

3
( ) ( )

( ) ( )

(
< ≤

< ≤










∆

))

20040102_j7703_colour_LowRes.pmd 1/29/2004, 2:57 PM7



8    © Color. Technol., 120 (2004) Web ref: 20040102

0 255

∆m3(p)

∆m2(p)

∆m1(p)

m3(p)m2(p)m1(p)

(•;p)δ

Figure 2  A typical shape of the proportionality term δ(•;p) for
m1(p), m2(p) and m3(p)

An example of applying Eqn 2 is given as the following.
Suppose the desired target colour (m1′ = 25, m2′ = 45, m3′
= 87) is chosen for colour remapping, the colour of pixel
p in the original texture image is [m1(p) = 50, m2(p) = 100,
m3(p) = 150], along with its deviation to the average colour
[∆m1(p) = 20, ∆m2(p) = 30, ∆m3(p) = 38]. In this case, the
new colour at pixel p can be calculated as the following:
m1

c(m1′;p) = (25 + 20) + 20 = 65; m2
c(m2′;p) = (45 + 30)

+ {[(20 – 30)/(100 – 50) × (75 – 100)] + 20} = 100; and
m3

c(m3′;p) = (87 + 38) + {[(30 – 38)/(150 – 100) × (125 –
150)] + 30} = 159.

Image segmentation and recolouring
Algorithm of the watershed-based segmentation
For a polychromatic texture image, it is necessary to partition
the whole image into several homogeneous regions before
applying the algorithm of colour remapping. As the
watershed-based segmentation performs well both in
locating outlines and clustering pixels [9], it was adopted
in this study. The watershed transform can be explained by
the concept of flooding simulation, as shown in Figure 3.

Consider the image as a topographic surface and assume
that holes are punched in each regional minimum of the
surface. The surface is then slowly immersed in water.
Starting from the minima at the lowest altitude, the water
will progressively flood the catchment basins of the image.
In addition, dams are raised at positions where the waters
coming from two different minima would merge. At the end
of this flooding procedure, each minimum is surrounded by
dams delineating its associated catchment basin. The whole
set of dams correspond to the watersheds and the input
image is partitioned into different catchment basins.

Watersheds

Catchment basins

Minima

Figure 3  Watershed transform represented by the concept of
flooding simulation

The watershed is usually applied on the gradient of an
image to find the edges [called watershed of gradient (WG)],
supposing that the gradient is relatively large at the boundary
of different regions. However, for a large amount of textile
fabric images, the boundaries tend to be relatively wide
between different regions, within which the values of the
pixels vary gradually from one region to another. Thus it is
difficult to decide into which region these pixels should be
classified. According to the homogeneous character of a
region, it was hypothesised that the difference between
pixels within the same region is smaller than that in a
different region. Based on this hypothesis, a new algorithm
of watershed of image difference (WD) is proposed instead
of WG (Figure 4).

In order to compare the performance of the WD and WG
algorithm, let us consider a one dimensional signal s(j)
(Eqn 4).
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The signal s(j) consists of three parts, with two parts of
level 100 standing at the left and right side, respectively,
and one part of level 180 in the middle. Between the
adjacent parts, there are two transitional boundaries in
which the signal changes slowly with a step of 4 units.
From the definition of the signal s(j), the ideal outlines of
the parts lie at positions j = 30 and j = 70, respectively. In
order to simulate the effect of texture, 50% Gaussian noise
with standard deviation of 6.0 is added to the signal (Figure
4a). The difference between s(j) and level 100 and between
s(j) and level 180 are plotted in Figure 4b. The lower values
of the two lines at positions between 0 and 100 are plotted
in Figure 4c. The maxima in Figure 4c should represent
the watersheds dividing different regions. It is clear that
the watersheds in Figure 4c remain at the correct positions
(j = 30 and j = 70), but those in Figure 4d are seriously
biased by the simulated texture. Therefore, in the
segmentation of the texture image, the algorithm of WD
was used instead of the traditional algorithm of WG.

It is known that the problem of over-segmentation is the
inherent drawback of the watershed-based algorithm [9].
To solve this, initial markers should be chosen for the
algorithm of WD-based segmentation. The markers were
decided by the method of hierarchical histogram-based
segmentation, which is described as follows [17]:
– transform the RGB value of each pixel into CIE L*a*b*

colour space;
– smooth the L* channel (containing only texture

information) using median filter [18];
– find the peaks and valleys of the histogram of channel

a*, and partition the image into a cluster of region Ra

by histogram analysis;
– for every individual region in cluster Ra, build the sub-

histogram of channel b*, and further partitioning Ra

into Rab;
– similar to the previous step, further partitioning is

carried out for Rab into RLab in channel L*.
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Figure 4  Comparison of image difference and image gradient using one-dimensional signal: (a) one-dimensional signal s(j) with
simulated texture; (b) difference between s(j) and the two levels 100 (solid line) and 180 (dashed line); (c) lower values of the two
lines in plot (b); (d) gradient of the signal in plot (a)

In the histogram analysis, the morphological filter was used
to eliminate the noise, and the thresholds were carefully
selected to reach a good segmentation result [17]. The final
meaningless trivial regions can be either integrated into
large regions or deleted interactively. Suppose there are C
regions in the image, and the mean colour for the kth region
is Lk

0ak
0bk

0. For every pixel in the image, the weighted
distance to the mean colour of region k is calculated
according to Eqn 5:

d L p L a p a b p bk k k k= − + − + −η[ ( ) ] [ ( ) ] [ ( ) ]0 2 0 2 0 2 (5)

where L(p), a(p), b(p) are the CIELAB attributes of pixel p,
and η is the weight of the luminance. The value of η is
defined as:

η =
+w w
w

a b

L2
(6)

where —wL, 
—wa and —wb is the average histogram width of all

the regions in channels L*, a* and b*, respectively. As the
variation of L* (mainly texture information) is much
stronger than that of a* and b* (mainly chromaticity
information), the value of η is commonly in the range of 0
to 1. Find the minimum distance dk0(p) and the next to
minimum distance dk1(p), if Eqn 7 holds:

d p d p Tk k0 1( ) min[ ( ), ]≤ ×β (7)

where T is an experiential threshold (value defined by the
user) and β is a distance ratio in the range of 0 to 1, then
pixel p is selected as the marker of region k0, otherwise it
should be reserved for classification in the DW algorithm.
Figure 5† shows the segmentation of a polychromatic
printed textile image. Figure 5b demonstrates the markers
selected in the case of η = 0.1 and β = 0.2.

In order to simplify the coding of the WD algorithm, the
list data structure was used to store the pixels for
classification in ascending order, according to their
distances to the mean colour of the regions. At every time
of flooding, a pixel p is popped out and its neighbours are
checked. If all of the already-labelled neighbours of p have
the same label, this label is assigned as pixel p, otherwise,
the label corresponding to the smallest distance is assigned
to pixel p. The pseudo language of the WD algorithm is
given in appendix I, and the segmentation result is shown
in Figure 5c, in which the regions are represented by its
average colour. The segmentation result obtained is quite
good especially in the region boundaries.

† Figures 5,7–9 can be viewed in colour in the online version of
this article (www.sdc.org.uk/publications/online.htm)
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Figure 5  Segmentation of a polychromatic printed textile image: (a) original image; (b) pixels not selected as markers are shown in
light-grey; (c) result of the WD-based segmentation

Recolouring of the polychromatic texture images
For every monochromatic region in a texture image, the
corresponding luminance Y is calculated (Eqn 8) [18].

Y R G B= + +0 299 0 587 0 114. . . (8)

As the texture in the textile fabric is mainly caused by
the combination of yarns, there are usually no angular
effects with strong contrast. Thus the histograms showing
luminance Y for each individual region are quite similar
to each other and contain only one peak. The width of the
peak is directly related to the texture strength of each
region. Shown in Figure 6 is the relationship of histogram
widths with respect to the mean luminance of different
regions for the texture image of Figure 5a.

After carrying out further investigations on various
different texture images, it was found that the relationships
were different, depending on the different properties of the
physical samples such as material, colour and texture
pattern. Figure 6 is only an example of the relationship for
a certain image. Therefore, the practical way to describe a
relationship between the texture strength and the
luminance of a region is either to find the appropriate

reasonable trends using data regression, or to simply apply
interpolation and extrapolation [19]. If t(•) is the
relationship, the term of texture strength g(•) for the kth
region can be defined as shown in Eqn 9:

g x
t x

t Y k
( )

( )
( )

= (9)

where 
—
Yk denotes the average luminance of the kth

monochromatic region. Substituting Eqn 9 into Eqn 2 gives
Eqn 10.

m m p m
t x

t Y
m m p pn

c
n n

k
n n( , )

( )
( )

( ( ); )′ ′ ′= + × +δ ∆ (10)

For common images, especially for textile fabric images,
there are usually no abrupt changes along the outlines in-
between the regions, due to the inter-reflection in the
boundary [20] and diffusion of colorants. In this study, we
use the term colour mixture to refer to this characteristic
of the texture image. However, when different solid colours
are remapped to the segmented regions, there will be
abrupt changes at the outlines in-between these regions.
Therefore, to simulate a natural image, this problem should
be solved. The method proposed in this study is based on
colour mixing using Gaussian blurring (Eqns 11 and 12):

gauss( , ) expx y K
x y

= × −
+








0

2 2

0
22σ (11)

gauss( ) expx K
x

= × −









1

2

1
22σ (12)

where K0,K1 are the constants for normalisation and σ0,σ1

are the standard deviation for the two-dimensional (Eqn 11)
and one-dimensional (Eqn 12) Gaussian filter, respectively.
The gauss(x,y) is applied on a*b* chromaticity plane with
σ0 = 1.0, and gauss(x) is applied on L* channel with σ1 =
0.4. Here, σ0 > σ1 is assumed, because colour information
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is affected more by the inter-reflection and diffusion. The
comparison between the algorithms including and excluding
colour mixing treatment is shown in Figure 7.† The residual
red pixels at the boundary of dark regions were correctly
eliminated when including colour mixing treatment, which
indicated the capability of the colour mixing treatment in
dealing with artefacts along the outlines of the regions.

Figure 7  Comparison of the algorithms of colour remapping with or without colour mixing treatment: (a) original image; (b) colour
remapping excluding colour mixing; (c) colour remapping including colour mixing; (d) magnified image of the marked rectangular
area in image (b); (e) magnified image of the marked rectangular area in image (c) [the white arrows in (d) and (e) indicate the
improvement of image fidelity after colour mixing treatment]

similarity was conducted using a statistical approach
instead, i.e. histogram intersection [23].

For each pixel in a texture image, its colour difference
to the mean colour is calculated in the display colour space.
The histogram of the colour difference is then constructed.
Let I be the target texture image, I′ be the reproduced
image and Hj(•) be the frequency of the jth bin of the
histogram, then the image colour similarity can be
calculated by the method of histogram intersection (Eqn
13) [23]:

p I I

H I H I

H I

j j
j

M

j
j

M
( ,

min[ ( ), ( )]

( )

′) =

′
=

=

∑

∑
1

1

(13)

where M is the number of bins in the histograms. When
the texture distribution of the two image, I and I′, are
similar, the term p(I,I′) should be appropriate for the
assessment of the image colour similarity. The more similar
the target image and the reproduced image, the closer the
term p(I,I′) approaches 1.0. In this study, image similarity
was calculated using the histogram intersection method.
The mean of the image similarity was found to be 0.83 for
the 10 pairs of target and reproduced images. Considering
that the texture details of the two images for comparison
were not identical, this image similarity result was quite
satisfactory.

In addition to the colour remapping of monochromatic
texture images, examples of recolouring on polychromatic
texture images are also shown in Figures 8 and 9.† In these
figures, the separated regions are represented by their
average colour in the label images. The simulation tests
showed that the appearances of recolouring results were
of high fidelity.

Experiment and simulation
The process of the whole application can be briefly
outlined as follows:
– separate the different regions in the texture image using

the WD-based segmentation algorithm;
– find the relationship between the texture strength and

the mean luminance from the separated regions;
– change the colours of the regions according to Eqn 10;
– perform colour mixture using Gaussian filtering using

Eqns 11 and 12.

The algorithm of colour remapping discussed earlier in
this paper is the core in the recolouring technique. To
evaluate the colour accuracy of the colour remapping
algorithm, monochromatic original and target images were
used. The mean colour of the target image was mapped on
the original image to simulate a new texture image. Details
can be found in a previous study [14].

The texture patterns of the original images and the
target images are selected to be similar so that the colour
and texture appearances of the target and reproduced
images are comparable. The performance of the algorithm
can be evaluated either using a psychophysical experiment
[14] or by means of colour image similarity measurement
[21–23]. As there was no pixel correspondence between
the reproduced and the target texture images, the
calculation of colour image difference cannot be directly
applied [21,22]. In this study, the evaluation of image

(e)(d)

(c)(b)(a)
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Figure 8  First example of recolouring including segmentation and colour remapping; (a) original image; (b) label image after
segmentation; (c) new simulated image

Figure 9  Second example of recolouring including segmentation and colour remapping; (a) original image; (b) label image after
segmentation; (c) new simulated image

Conclusions
A method of recolouring both monochromatic and
polychromatic texture images was developed in this study.
It was clear that the RGB channels are highly correlated from
the investigation of the channel correlation. According to the
basic proportionality relationship between channels, the
algorithm of colour remapping on texture images was
developed. For polychromatic texture images, the new
algorithm of WD-based segmentation was proposed to
separate different regions. This method has the capability
of dealing with relatively broad transitional boundaries. To
overcome the problem of over-segmentation of watershed,
the initial major markers are selected using the hierarchical
histogram-based analysis in L*a*b* colour space. After WD-
based segmentation, the algorithm of colour remapping was
applied on each individual region of the polychromatic
texture images. To achieve image fidelity, colour mixing in
L*a*b* space by Gaussian filtering was applied to eliminate
the artefacts that were introduced during the colour
remapping. The overall performance of the recolouring
method developed in this study was satisfactory and could
be applied to the visualisation of new pattern design in the
textile printing and other graphic design areas.
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Appendix I  Pseudo language of the WD algorithm

• Definitions:
I Input image
L Label image
N Amount of markers
C Amount of regions in input image
marker [N] Pixels selected as markers
mean [C] Mean value of the pixels belonging to regions
list List structure for pixels storing
p,p′ Pixel

• For all pixels p, let L(p) ← –1
• Let p be all marker[N], and L(p) be the corresponding labels
• Calculate mean[N] of all regions
• Find p′, the neighbours of marker [N] which satisfies L(p′) = –1, and store them into list
• While list is not empty, do

– Pop out a pixel p from the beginning of list
– Check all the labels of its neighbours p′ that satisfy L(p′) > –1
– If all the labels are the same

• Assign that label to L(p)
– Otherwise

• Calculate the distances between p and mean[i], where i is the label of each neighbour of p
• Find the pixel with the minimal distance and its corresponding label i0
• L(p) ← i0

– End if
– Update mean[L(p)]‡

– For all neighbours (p′) of p that satisfy L(p′) = –1
• Calculate the distance d between p′ and mean[L(p)]
• Insert p′ into list according to d in ascending order

– End for
• End do

‡ This term means that when a new pixel is assigned into a region, the mean colour of the corresponding region should be recalculated
accordingly
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