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The bidirectional texture function (BTF) is widely employed to achieve realistic digital reproduction of real-world
material appearance. In practice, a BTF measurement device usually does not use high-resolution (HR) cameras in
data collection, considering the high equipment cost and huge data space required. The limited image resolution
consequently leads to the loss of texture details in BTF data. This paper proposes a fast BTF image super-
resolution (SR) algorithm to deal with this issue. The algorithm uses singular value decomposition (SVD) to
separate the collected low-resolution (LR) BTF data into intrinsic textures and eigen-apparent bidirectional re-
flectance distribution functions (eigen-ABRDFs) and then improves the resolution of the intrinsic textures via
image SR. The HR BTFs can be finally obtained by fusing the reconstructed HR intrinsic textures with the LR
eigen-ABRDFs. Experimental results show that the proposed algorithm outperforms the state-of-the-art single-
image SR algorithms in terms of reconstruction accuracy. In addition, thanks to the employment of SVD, the
proposed algorithm is computationally efficient and robust to noise corruption. © 2017 Optical Society of America

OCIS codes: (100.3020) Image reconstruction-restoration; (100.6640) Superresolution; (290.1483) BSDF, BRDF, and BTDF.

https://doi.org/10.1364/AO.56.002745

1. INTRODUCTION

With the continuously increasing capabilities of computer
hardware, more and more attention is being paid to synthesize
photorealistic images. Many industrial applications require real-
istic reproduction of material behavior under complex viewing
and lighting conditions. This behavior can be described by the
bidirectional reflectance distribution function (BRDF), which
was first introduced in [1]. The BRDF can be represented as a
physically based analytic model, such as the Cook–Torrance
[2], Ward [3], and He [4] models. These representations make
the BRDF convenient to be applied in practical applications,
such as computer graphics rendering. Despite its convenient
usage, the BRDF is suitable only for homogeneous materials
that do not contain textures. In the real world, however, a large
number of rough surfaces with complicated spatial structures
exist. These rough surfaces cause various effects, such as shad-
owing, masking, inter-reflection, and subsurface scattering,
which cannot be described by BRDF.

The bidirectional texture function (BTF) was introduced by
Dana et al. [5] to capture at least some of the above effects. BTF is
essentially a six-dimensional function parameterized by position
p, viewing direction ωo, and lighting direction ωi, as illustrated
in Fig. 1. As various effects are merged in this representation, the
BTF can make the rendering extremely realistic.

The wide range of surface effects usually makes the BTF too
complicated to be synthesized through analytic models or sim-
ple simulations. Hence, some image-based methods have been
developed to represent BTF data [6–8]. These methods rely on
measured BTFs (acquired real-world data) in combination with
appropriate synthesis algorithms. Generally, the appearances of
the real-world samples are captured by color camera(s) [9], so
the BTFs can be regarded as a collection of RGB texture
images. In the existing measurement systems, the image reso-
lutions of the BTFs are relatively low [5,10,11]. The employ-
ment of low-resolution (LR) cameras is mainly due to three
reasons. First, high-resolution (HR) cameras are usually expen-
sive. Second, the measurement time of HR images, which can
be dozens of hours, is too long for practical applications. Third,
the acquired raw HR BTF data require a huge storage space
that can be hundreds of gigabytes.

An issue incurred by the employment of LR cameras is the
loss of texture details, as illustrated in Fig. 2. The solution is to
computationally reconstruct the HR BTF images from the ac-
quired LR ones using the image super-resolution (SR) tech-
nique. However, as the BTFs of a single material have a large
number of images (thousands to tens of thousands), applying
image SR directly on BTFs requires a long computational
time. Besides, the reconstructed HR BTFs will still take a huge
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storage space. These two limitations need to be resolved for
practical applications.

This paper proposes a fast image SR algorithm for BTF
reconstruction using singular value decomposition (SVD).

The employment of SVD is based on the key observation that
BTFs are highly relevant and thus each can be represented by
the linear combinations of a few basis functions. The flow
chart of the proposed algorithm (see Fig. 3) is depicted as follows.
First, all the LR BTFs of the material sample are acquired
and consequently transformed to a BTFmatrix. The BTFmatrix
is decomposed into eigen-textures, singular values, and eigen-
ABRDFs (apparent BRDFs [12]) using SVD. By keeping only
a few principal components, the BTF data can be compressed
and the noise can be removed. Second, intrinsic textures are
obtained by weighting the eigen-textures with corresponding
singular values. Image SR is then applied on the intrinsic textures
instead of the original BTF images. Finally, HR BTFs are ob-
tained by fusing the HR intrinsic textures and LR eigen-
ABRDFs. As the number of intrinsic textures is far less than that
of BTF images, the computational time can be greatly reduced
when compared with the direct SR algorithms.

To summarize, the contributions of the proposed algorithm
are as follows:

• An image super-resolution algorithm is proposed for re-
constructing high-resolution BTF data based on singular value
decomposition.

• High computational efficiency is achieved by applying
super-resolution on the decomposed intrinsic textures instead
of the raw BTF images.

• By keeping a limited number of intrinsic textures, the
proposed algorithm is robust to noise corruption in HR
BTF reconstruction.

The rest of the paper is organized as follows. Section 2
briefly reviews the works related to BTF acquisition and com-
pression, as well as image SR. Section 3 presents the proposed
algorithm. Experimental results are demonstrated in Section 4.
Finally, Section 5 concludes this paper.

2. PRIOR ARTS

In this section, we provide a brief review of the works related
to BTF acquisition and compression, as well as image super-
resolution.

Fig. 1. Parameters describing BTF geometry in the sample coordi-
nate system, including the viewing direction ωo≔�θo;ϕo�, lighting di-
rection ωi≔�θi ;ϕi�, and pixel position p≔�x; y�.

Fig. 2. Example of (a) a LR BTF image and (b) a HR BTF image of
the same material. Texture details are lost in the LR image.
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Fig. 3. Flow chart of the proposed BTF image super-resolution algorithm.
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A. BTF Acquisition and Compression
In the literature, the most common BTF measurement devices
are the ones with gonioreflectometer-like structures [5,10,13].
These devices are usually equipped with a camera and a light
source, both of which can move across the hemisphere above
the planar sample to capture the material appearance under dif-
ferent viewing and lighting directions. The shortage is that the
measurement time is very long, with most spent on data trans-
fer from the camera to the computer. In [14], the authors used
an array of 151 commodity digital still cameras mounted on a
hemispherical gantry for BTF collection. The measurement de-
vice can simultaneously acquire the material appearance of 151
different viewing directions, and thus the data acquisition effi-
ciency is much improved. However, the cost of this measure-
ment device is quite expensive.

The image resolutions of acquired BTFs are 256 × 256 pixels
in [10] and 400 × 400 pixels in [15]. Although the image res-
olution is relatively low, the total size of BTF data is still huge
because of the large number of viewing and lighting directions.
For convenient use of BTFs in practical applications, several BTF
compression algorithms have been introduced in the literature,
among which SVD is about the simplest one [16]. With
SVD, the transformed raw BTF matrix is decomposed to an
eigen-texture matrix relating to spatial positions and an eigen-
ABRDF matrix relating to viewing/lighting directions. Since
the SVD can reduce the amount of data while retaining the in-
tegrity of relevant dimension information, it is widely used in
many BTF extended applications. For example, in [17], the au-
thors propose a method to generate BTFs for large-scale material
samples by applying a texture optimization on the eigen-texture
matrix. In [18], the authors use the eigen-ABRDF matrix to se-
lect sparse acquisition positions and reconstructs the entire BTFs
from the angularly sparse measurements.

B. Image Super-Resolution
The goal of single-image SR is to estimate a HR image from a
LR observed one [19]. There are mainly three categories of
algorithms dedicated to the image SR problem, i.e., interpola-
tion-based ones [20–22], reconstruction-based ones [23–25],
and learning-based ones [26–28].

The interpolation-based algorithms are widely used for
producing zoom-in images because of their simplicity and easy
implementation. However, these algorithms tend to blur the
high-frequency details and often introduce noticeable aliasing
artifacts the along edges.

The reconstruction-based algorithms estimate the HR im-
age by requiring its blurred and down-sampled version to be
consistent with the original LR image [23] and incorporating
prior knowledge into the ill-posed inverse problem. The re-
construction accuracy depends on the prior and its compatibil-
ity with the given image.

The learning-based algorithms learn the relations between
LR and HR image patches from a given database. Adopting
the philosophy of LLE [29] from manifold learning, the work
in [26] maps the local geometry of the LR patch space to that of
the HR patch space by assuming similarity between the two
manifolds. In [28], the authors construct a set of mapping
relationships between the LR and HR patches by grouping cor-
relative neighbors using a learned LR–HR dictionary pair and

efficiently reduce the runtime. The effectiveness of learning-
based algorithms depends highly on the supporting image data-
base, and the reconstruction results will degrade when similar
patches do not exist in the database.

Instead of learning a relationship between LR–HR image
patches, the work [30] first uses SVD to decompose the images
and then learns a mapping of the singular vectors between the
LR and HR images. We note that although our proposed algo-
rithm also employs SVD, the fundamentals of these two algo-
rithms are totally different. More specifically, the proposed
algorithm uses SVD to decompose the entire BTF matrix
but not a single image as in [30]. Besides, the proposed algo-
rithm belongs to the reconstruction category and does not
require any training database for image SR.

3. PROPOSED BTF IMAGE
SUPER-RESOLUTION

In the proposed algorithm, only one HR reference image at a
specified viewing/lighting direction is acquired for each
material. Based on this LR–HR image pair, the HR versions
of all the other BTF images are reconstructed from the corre-
sponding LR ones using optimization. In the following, we first
give the fundamentals of imaging model and image SR and
then introduce the proposed SVD-based BTF image SR algo-
rithm. The consideration of image boundary in the practical
computation will also be discussed.

A. Fundamentals
Suppose that a BTF measurement system has mo viewing di-
rections and mi lighting directions, and then a total number
of N s � mo × mi LR images of a sample are acquired in the
measurement process. After the geometric rectification of the
acquired images, the resolution of each LR image is supposed
to be ml × nl pixels, where ml and nl are the numbers of image
rows and columns, respectively. The objective of BTF image
super-resolution is to reconstruct all the LR images to the
HR images with resolution mh × nh pixels. Here, mh � ml × d r
and nh � nl × d r , with d r being an integer factor not less
than 2.

In the common single-image case, the relationship between
the LR and HR images can be formulated as

y � DHx� n � Px� n; (1)

where y ∈ RN l , with N l � ml × nl , denotes the observed LR
image, and x ∈ RNh , withNh � mh × nh denotes the HR image
to be estimated. The vectors y and x are obtained by stacking the
corresponding images into column vectors in a lexicographic
order. In Eq. (1), n ∈ RN l denotes an independent identically
distributed additive white Gaussian noise, D ∈ RN l×Nh is the
down-sampling matrix, H ∈ RNh×Nh is the blurring matrix,
which is generated by the blur kernel, and P≔DH. In the
BTF system, the blur kernel between the LR and HR images
in different viewing and lighting directions is fixed and can
be computed by using a collection of HR and LR images [31].

Estimating the HR image from the LR image is an ill-posed
problem because, according to Eq. (1), many HR images can
produce the same LR image. Incorporating a proper regulari-
zation with the target image x, the maximum a posteriori
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(MAP) estimator of x for image SR can be obtained by solving
the optimization problem

x̂ � arg min
x
ky − Pxk22 � αϕ�x�; (2)

where the first term is a data fidelity term that enforces the
blurred and the down-sampled version of the HR image to
be close to the observed LR image, and the second term is
the regularization related to the image prior information.
The parameter α is a trade-off between the two terms. The
regularization term can adopt edge smooth priors [32–34]
or image statistical priors [24,35]. In this paper, we simply
use the image gradient constraint with l2 norm [32]. In the
following, the image super-resolution based on Eq. (2)
will be referred to as the single-image reconstruction (SIR)
algorithm.

B. SVD-Based BTF Super-Resolution
Let Y � �y1; y2;…; yN s

� ∈ RN l×N s be the acquired LR BTF
matrix and X � �x1; x2;…; xN s

� ∈ RNh×N s be the correspond-
ing HR BTF matrix to be estimated. Clearly, X can be recov-
ered in a column by column manner by solving Eq. (2).
However, as N s is very large, the reconstruction process is very
time-consuming. In the following, we introduce a fast BTF
image SR algorithm based on SVD.

By applying SVD to Y and adopting only C �0 < C < N s�
principal components, Y is decomposed into three matrices
that, when multiplied, approximate the original matrix

Y ≈ Ỹ � UySyVT
y � AyVT

y ; (3)

where Uy ∈ RN l×C is the eigen-texture matrix, Vy ∈ RN s×C is
the eigen-ABRDF matrix, and Sy ∈ RC×C is a diagonal matrix
of singular values. The weighted eigen-texture matrixAy≔UySy
is referred to as intrinsic textures in this work. The parameter C
is the number of intrinsic texture components. When C � N s,
the matrix Ỹ will be exactly Y. In practical computation, we
always let C < N s so that the BTF can be compressed or more
effectively represented, and image noise can be removed to
some extent.

Note that with the decomposition in Eq. (3), the BTF in-
formation along the pixel position is separated from that along
the viewing/lighting directions. The column vectors of matrix
Vy are actually the basis functions of viewing/lighting directions
and are irrelevant to the texture coordinate, or in other words,
irrelevant to image resolution. Hence,Vy can also be the proper
basis functions of the HR BTF matrix X. More specifically, the
HR BTF matrix can be reconstructed from Vy as follows:

X̃ � BxVT
y ; (4)

where Bx is computed as

Bx � XVy : (5)

When the number of intrinsic texture components, C , is ap-
propriate, matrix X̃ should approximate X, i.e., X̃ ≈ X. Then,
estimating the HR BTF matrixX is equivalent to estimating X̃.
Moreover, as the basis function matrix Vy is known, it is also

equivalent to estimating Bx . In the following, we will show the
relationship between Bx and Ay.

By left multiplying the both sides of Eq. (5) with P, we have
PBx � PXVy. For simplicity, at the moment we assume the
acquired BTF data is free of noise. Then, according to the im-
aging model in Eq. (1), we have PBx � YVy. According to
SVD, the intrinsic texture matrix Ay relates to the LR BTFs
as Ay � YVy. Hence, we have

Ay � PBx : (6)

When considering image noise, the above relationship becomes
Ay ≈ PBx . Equation (6) indicates that Ay is the LR version of
Bx with respect to the blurring down-sampling matrix P.

As illustrated in Fig. 4, by transforming intrinsic textures
to images, estimating Bx from Ay can be casted to the image
SR problem. Letting ay;i, where i ∈ f1; 2;…; Cg, be the ith
column vector of the LR intrinsic texture matrix Ay, the
MAP estimator of bx;i can be obtained by solving the following
optimization problem:

b̂x;i � arg min
bx;i

kay;i − Pbx;ik22 � βkLbx;ik22; (7)

where L ∈ RNh×Nh is a Laplacian matrix and β is a weighted
parameter. Accordingly, the HR intrinsic texture matrix is
B̂x � �b̂x;1; b̂x;2;…; b̂x;C �. With the obtained B̂x , the HR
BTF can be reconstructed as

X̂ � B̂xVT
y : (8)

In this work, the above algorithm is referred to as the SVD-
based SR algorithm. Compared with the SIR algorithm in
Eq. (2), the SVD-based SR algorithm efficiently reduces the
reconstruction time since the number of intrinsic texture com-
ponents, C , is far less than the number of images N s. In addi-
tion, the SVD decomposition reduces the noise contained in
the raw LR BTF images, and thus the SVD-based SR algorithm
can be more robust to image noise.

LR
 

H
R

 

(a) (b) 

Fig. 4. Images of the LR and HR intrinsic texture components of
the material carpet06 in the UBO2014 BTF dataset [15]. (a) The im-
age of the first intrinsic texture component. (b) The image of the
300th intrinsic texture component. The images are adjusted for better
visualization.
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C. Practical Consideration
In the imaging model in Eq. (1),H is generally a block circulant
matrix with circulant blocks structured blurring matrix formed
by the blur kernel when the periodic boundary condition of
convolution is used [36]. According to [37], the periodic boun-
dary condition is not satisfied in practical situations, and it can
cause ringing artifacts in the boundaries of the reconstructed
HR image. As suggested in [37], the occurrence of artifacts
can be completely eliminated by using an exact model of
the blurring process. Assuming that the blur kernel has size
�2w� 1� × �2w� 1�, Eq. (1) can be rewritten as

y � D 0H 0x 0 � n � P 0x 0 � n; (9)

where x 0 ∈ R�mh�2w��nh�2w�, D 0 ∈ RN l×�mh�2w��nh�2w�, H 0 ∈
R�mh�2w��nh�2w�×�mh�2w��nh�2w�, and P 0 ∈ RN l×�mh�2w��nh�2w�.
Note that y is still the original LR image as in Eq. (1). With
this modification, the unknown pixels around the boundary
of the HR image are introduced to produce the true blurred
pixels of the image boundary. On the other hand, the wrong
blurred pixels produced by them are discarded during the down-
sampling process. Then, the common image SR image problem
is formulated as

x̂ 0 � arg min
x 0

ky − P 0x 0k22 � αϕ�x 0�: (10)

For the proposed SVD-based SR algorithm, the expanded
HR intrinsic texture component can be reconstructed by solv-
ing the following optimization problem:

b̂ 0
x;i � arg min

b 0
x;i

kay;i − P 0b 0
x;ik22 � βkLb 0

x;ik22; (11)

where L is the Laplacian operator. The reconstructed HR in-
trinsic texture component b̂x;i can be obtained by discarding
the boundary zone of width w in the periphery of the intrinsic
texture b̂ 0

x;i. Then, the HR BTFs can be reconstructed accord-
ing to Eq. (8).

4. EXPERIMENTS

In the experiments, we evaluate the proposed SVD-based SR
algorithm on both synthetic and real data. The synthetic data
are generated based on the Bonn University UBO2014 dataset
[15], which was captured using the technique introduced in
[14]. The real BTF images were captured using the imaging
system presented in our previous work [9]. The effectiveness
of the proposed algorithm is compared with four baseline algo-
rithms, i.e., bicubic interpolation [23], anchored neighborhood
regression (ANR) [28], locally linear embedding (LLE) [26],
and the SIR in Eq. (2). The ANR and LLE algorithms are both
learning-based algorithms. In the experiments, the parameter α
in SIR and the parameter β in the proposed algorithm are both
set as 10−3. The number of intrinsic texture components is set
as C � 300. With this setting, more than 99% of the infor-
mation of the raw LR BTF data can be kept after SVD.

As the size of BTF data is huge, it is impractical to use the
conventional algorithm [38] to directly compute a truncated
SVD for a material considering the high requirement of com-
putation time and memory space. Hence, in this work, we use

the technique introduced in [39] to obtain the eigen-ABRDFs
Vy, and then compute the intrinsic textures as Ay � YVy.

We note that the proposed algorithm provides a solution to
universal resolution improvement on various textures, under
the guidance of a HR reference image. In addition, the algo-
rithm also considers the possible out-of-focus blur that may
occur in practical applications. For a fair comparison with
the baseline algorithms, the experiments are conducted in
the circumstance of 2 × resolution magnification.

A. Synthetic Data Results
The UBO2014 dataset consists of seven semantic categories
with 12 different materials in each category. Several examples
of these materials are illustrated in Fig. 5. For each material, its
full-resolution (or HR) BTFs are measured using the bidirec-
tional sampling of 151 viewing directions and 151 lighting di-
rections. The rectified texture images have a spatial resolution
of 400 × 400 pixels.

The LR images are produced from the original HR images
by applying a 9 × 9 Gaussian blurring kernel with a standard
deviation 1.5 and decimated by a factor of d r � 2. For each
material, one HR reference image taken under the front view
ωo � �0°; 0°� with the lighting direction ωi � �45°; 120°� is
picked. The picked HR images (one image for each material)
and their corresponding LR images are used to estimate the blur
kernel required in the proposed and SIR algorithms and are also
used as the training database of the ANR and LLE algorithms.

The accuracy of these algorithms is evaluated in terms of
mean root mean square error (mRMSE), mean peak signal-
to-noise ratio (mPSNR), and mean relative error (mRE) on
all the BTFs. The mRMSE of a material is computed as

mRMSE � 1

N s

XN s

k�1

�
1ffiffiffiffiffiffiffi
Nh

p kxk − x̂kk2
�
; (12)

where xk and x̂k are the kth ground truth (GT) and recon-
structed HR images (in column vector format), respectively.
The mPSNR is defined as

  
carpet 04 carpet 06 fabric02 felt 02 

  
leather 08 leather 11 stone 03 stone 10 

  
wallpaper 01 wallpaper 08 wood 05 wood 11 

Fig. 5. Example images of the 12 real materials used in the
experiment.
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mPSNR � 1

N s

XN s

k�1

20 log10
max�xk�

1ffiffiffiffiffi
Nh

p kxk − x̂kk2
; (13)

where the operator max�xk� returns the maximal entry in xk.
The mRE is computed as

mRE � 1

N s

XN s

k�1

�kxk − x̂kk2
kxkk2

× 100%
�
: (14)

As discussed above, owing to the employment of SVD, the
proposed algorithm is more robust to image noise when com-
pared with the SIR algorithm. Figure 6 shows the mRMSE of
all the UBO2014 materials of the two algorithms under various
noise levels, with the standard deviation σ changing from 0 to
0.015 in the range [0, 1]. It is observed that when the LR im-
ages are free of noise, the reconstruction error of the proposed
algorithm is a little higher than that of the SIR algorithm. This
slight accuracy degradation is because that the number of in-
trinsic texture components C � 300 is much less than the
number of viewing and lighting directions N s � 151 × 151.
In the case of noise corruption, the reconstruction errors of
the proposed algorithm are always lower than those of the
SIR algorithm. The accuracy improvement is very obvious
when the noise level is high.

Table 1 further shows the reconstruction errors of seven se-
mantic categories of the UBO2014 dataset when the noise level
is σ � 0.01. This noise level is adopted to simulate the imaging
noise of our real BTF imaging process. It can be seen that the

proposed algorithm performs the best, followed by the ANR
and LLE algorithms. The bicubic algorithm always gives the
highest errors.

To demonstrate the visual quality, the SR results of the ma-
terials fabric02 and carpet04 under three different combinations
of viewing and lighting directions are presented in Figs. 7 and
8, respectively. It is observed that the images produced by
the bicubic algorithm are quite blurry. The ANR and LLE al-
gorithms produce clearer edges but fail to recover fine texture
details. The reconstructed images of the proposed algorithm
contain both sharper edges and finer details and are very close
to the ground truths.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150

0.005

0.006

0.007

0.008

0.009

0.010

0.011
m

R
M

S
E

Noise Level ( )

 SIR, Eq. (2)
 Proposed

Fig. 6. Average reconstruction error of all materials using the SIR
algorithm and the proposed algorithm, under different noise levels (σ).

Table 1. mRMSE (×10−3), mPSNR, and mRE of Seven Semantic Categories Produced by the Four SR Algorithms

Bicubic ANR LLE Proposed

mRMSE mPSNR mRE (%) mRMSE mPSNR mRE (%) mRMSE mPSNR mRE (%) mRMSE mPSNR mRE (%)

Carpet 10.22 32.30 9.85 6.07 35.71 5.97 6.21 35.48 6.12 5.03 37.47 4.88
Fabric 14.40 30.45 10.50 8.11 34.38 6.45 8.52 33.64 7.03 5.74 37.84 4.44
Felt 7.32 32.61 8.24 3.43 35.62 3.92 3.92 34.40 4.63 2.00 40.71 2.19
Leather 20.55 29.70 15.64 12.14 32.61 10.25 12.41 32.14 10.78 9.76 35.57 7.62
Stone 12.78 31.54 8.46 7.66 34.72 6.03 7.98 34.02 6.68 6.15 38.34 4.04
Wallpaper 9.27 29.84 8.85 5.60 34.61 6.11 5.92 33.94 6.97 4.25 37.66 4.32
Wood 6.84 31.60 5.37 4.77 34.06 3.76 5.22 33.45 4.25 3.28 38.04 2.45

 GT Bicubic ANR LLE Proposed

 

 

 

Fig. 7. GT and reconstructed HR images on material fabric02
under different viewing and lighting directions. Row 1: �ω1

o ;ω
1
i ��

�0°;0°;37.5°;240°�. Row 2: �ω2
o ;ω

2
i ���45°;120°;60°;195°�. Row 3:

�ω3
o ;ω

3
i ���75°;240°;52.5°;120°�. The images are adjusted for better

visualization.

 GT Bicubic ANR LLE Proposed

 

 

 

Fig. 8. GT and reconstructed HR images on material carpet04
under different viewing and lighting directions. Row 1: �ω1

o ;ω
1
i � �

�0°; 0°; 52.5°; 260°�. Row 2: �ω2
o ;ω

2
i � � �45°; 120°; 30°; 60°�. Row

3: �ω3
o ;ω

3
i � � �75°; 240°; 60°; 270°�. The images are adjusted for bet-

ter visualization.
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B. Real Data Results
Figure 9 shows the example BTF images of 15 materials cap-
tured by our BTF imaging system [9]. These materials belong
to three categories (knitted fabric, yarn-dyed fabric, and woven)
and are of various color patterns. For each material, the full LR
BTFs are measured under 96 viewing directions and 77 lighting
directions. The resolution of the rectified images is 256 × 256
pixels.

For each material, one HR reference image is taken under
the viewing direction ωo � �0°; 0°� and the lighting direction
ωi � �40°; 120°� using a single lens reflex (SLR) camera. The
rectified HR images have a spatial resolution of 512 × 512 pix-
els. Because of the different color characteristics of the imaging
devices, the color appearances of the LR and HR images are
inconsistent. In the experiment, color consistency is achieved
by color calibration via two-order polynomial fitting [40]. As in
the synthetic data case, the 15 HR images, as well as the cor-
responding LR images, are used to estimate the blur kernel for
the proposed algorithms and to serve as the training database
for the ANR and LLE algorithms.

The SR results of knitted fabric #5, yarn-dyed fabric #1, and
woven #4 under the identical viewing and lighting condition to
the HR images are shown in Fig. 10. As expected, the proposed
algorithm produces the best reconstruction, while the bicubic
algorithm produces the worst.

To thoroughly evaluate the SR capability, we compare the
proposed algorithm with the other algorithms under the view-
ing and lighting directions different from the HR image acquis-
ition. In this circumstance, the ground truths are not available.
Figure 11 shows the SR results of the materials knitted
fabric #2, yarn-dyed fabric #3, and woven #1 under the viewing
direction ωo � �30°; 0°� and the lighting direction ωi �
�40°; 240°�. The images reconstructed by the ANR and LLE
algorithms are sharper in appearance than those by the bicubic
algorithm. However, high-frequency artifacts are introduced by
the training samples. In comparison, in the HR images recon-
structed by the proposed algorithm, textures are well recovered,
and artifacts are rarely observed.

C. Computational Efficiency
We compare the computational efficiency of the proposed al-
gorithm with those of the bicubic, ANR, LLE, and SIR algo-
rithms. All algorithms are implemented using MATLAB on a
personal computer with an Intel(R) Core(TM) i5-4590 CPU at
3.30 GHz and 16 GB RAM. Table 2 shows the average
runtime of the five algorithms for one material from the
UBO2014 dataset. It is observed that the proposed algorithm
runs 3 × faster than ANR, 29 × faster than LLE, and 59 ×
faster than SIR. The bicubic algorithm runs faster than the pro-
posed algorithm owing to its simple computation, but as it is
known, its reconstruction is not satisfactory.

D. Scene Rendering
A conventional application of BTF data is the rendering of
three-dimensional models. For the proposed algorithm, the
SR results can be used directly as they have already been
decomposed via SVD. For the bicubic, ANR, and LLE
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Fig. 9. Example images of the 15 real materials used in the experi-
ment. Row 1: knitted fabric. Row 2: yarn-dyed fabric. Row 3: woven.
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Fig. 10. GT and reconstructed HR images under the viewing di-
rection ωo � �0°; 0°� and the lighting direction ωi � �40°; 120°�.
This direction configuration is identical to the HR image acquisition
condition. (a) Material knitted fabric #5. (b) Material yarn-dyed fabric
#1. (c) Material woven #4.
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Fig. 11. SR results of the four SR algorithms under the viewing
direction ωo � �30°; 0°� and the lighting direction ωi � �40°; 240°�.
(a) Material knitted fabric #2. (b) Material yarn-dyed fabric #3.
(c) Material woven #1.

Table 2. Computation Time (in Hours) of Different SR
Algorithms for a Single Material

Algorithm Bicubic ANR LLE SIR, Eq. (2) Proposed

Time 0.76 7.60 48.14 95.00 1.58
Speedup — 3 × 29 × 59 × —
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algorithms, however, the SR results need further compression
due to their huge capacity.

Figure 12 illustrates the scenes rendered using the
UBO2014 materials under a single point-light illumination.
As observed with the proposed SR algorithm, the rendering
scenes can keep both large-scale and fine-scale textures, and
the appearances are quite close to the ground truths. In com-
parison, the rendering scenes corresponding to the other SR
algorithms do not achieve such appearance fidelity. Figure 13
further shows the rendering results using our materials. As ex-
pected, the rendered scenes based on the proposed algorithm
are satisfactory.

5. CONCLUSIONS

This paper proposes a fast BTF image SR algorithm using SVD.
The size of BTF data can be efficiently reduced by decompos-
ing the raw data into intrinsic textures and eigen-ABRDFs. By
exploring the relationship between the LR and HR intrinsic
textures, SR is conducted on the intrinsic textures instead of
raw images. Thanks to the employment of SVD, the proposed
algorithm is computationally efficient and robust to noise cor-
ruption. Experimental results indicate that the proposed algo-
rithm outperforms the state-of-the-art algorithms in terms of
both accuracy and computational efficiency.

The limitation of the proposed algorithm is that it only uses
the simple l2 norm constraint as the prior regularization. The
exploration of texture characteristics and its adoption as prior
regularization in the SR optimization framework will be the
subject of our future work.

Funding. National Natural Science Foundation of China
(NSFC) (61371160); Hong Kong Research Institute of
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Fig. 12. Three-dimensional balls rendered using the original HR BTFs (first column) and the HR BTFs reconstructed by different SR algorithms
(second column to fifth column) under a single point-light illumination. (a) Material felt02. (b) Material leather08. (c) Material wallpaper08. The
contents in the red boxes are magnified for better comparison.
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Fig. 13. Three-dimensional balls rendered using the HR BTFs re-
constructed by different SR algorithms under a single point-light il-
lumination. (a) Material knitted fabric #1. (b) Material yarn-dyed
fabric #5. (c) Material woven #2. The contents in the red boxes are
magnified for better comparison.
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