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Spectral bidirectional texture function (BTF) is essential for accurate reproduction of material appearance due to
its nature of conveying both spatial and spectral information. A practical issue is that the acquisition of raw
spectral BTFs is time-consuming. To resolve the limitation, this paper proposes a novel framework for efficient
spectral BTF acquisition and reconstruction. The framework acquires red-green-blue (RGB) BTF images and just
one spectral image. The full spectral BTFs are reconstructed by fusing the RGB and spectral images based on
nonnegative matrix factorization (NMF). Experimental results indicate that the accuracy of spectral reflectance
reconstruction is higher than that of existing algorithms. With the reconstructed spectral BTFs, the material
appearance can be reproduced with high fidelity under various illumination conditions. © 2016 Optical

Society of America

OCIS codes: (290.1483) BSDF, BRDF, and BTDF; (110.4234) Multispectral and hyperspectral imaging; (330.1730) Colorimetry;

(330.1710) Color, measurement.
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1. INTRODUCTION

Accurate reproduction of material appearance is required in
many industries, including automobile, painting, textile, etc.
Hence, there is a need to acquire the exact information about the
reflectance properties of a material. The reflectance properties of
a homogeneous material under different viewing and lighting
directions can be described by the bidirectional reflectance dis-
tribution function (BRDF) [1]. The BRDF f brdf �ωi ;ωo; λ� is
defined as the ratio of reflected radiance L exiting from a surface
in a direction ωo ≔ �θo;ϕo�, to the irradiance incident E on the
surface from direction ωi ≔ �θi ;ϕi�, for a particular wave-
length λ, as follows:

f brdf �ωi ;ωo; λ� �
dL�ωo; λ�
dE�ωi ; λ�

: (1)

The BRDF can be represented as physics-based analytic models
such as the Cook–Torrance [2], Ward [3], and He [4] models.
These representations make the BRDF convenient to use in
practical applications such as computer graphics rendering.
Alternatively, the BRDF data can be sampled densely enough
from the material of the real world and used directly as a table-
based model [5].

Despite its convenient usage, the BRDF is suitable only for
homogeneous materials that do not contain textures. In the real
world, however, a variety of rough surfaces have complicated
spatial structures. These rough surfaces cause various effects
such as shadowing, masking, interreflection, and subsurface
scattering, which cannot be described by the BRDF. The bidi-
rectional texture function (BTF) was introduced by Dana et al.
[6] to capture at least some of these effects. As illustrated in
Fig. 1, the BTF f btf �p;ωi ;ωo; λ� is a seven-dimensional func-
tion of surface position p, lighting direction ωi, viewing direc-
tion ωo, and wavelength λ, as follows:

f btf �p;ωi ;ωo; λ� �
dL�p;ωo; λ�
dE�p;ωi ; λ�

: (2)

The behavior of BTFs is usually too complicated to be
synthesized through analytic models or simple simulations.
Hence, state-of-the-art methods, known as image-based mod-
els, have been developed to represent BTF data [7–9]. These
methods rely on measured BTFs (acquired real-world data) in
combination with appropriate synthesis methods. Because mul-
tispectral imaging cameras are expensive, and the measuring
process is time consuming, BTFs are generally captured using
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RGB cameras [10,11], and the BTF becomes f btf �p;ωi ;ωo; c�,
where c ∈ fR; G; Bg. However, because reflectance characteris-
tics are wavelength-dependent, RGB BTFs are insufficient for
accurate reproduction of material appearance under various
lighting conditions. Hence, in practical applications, the effi-
cient acquisition of spectral BTFs becomes an issue that must
be resolved.

In this paper, we propose a framework for efficient spectral
BTF acquisition and reconstruction. As illustrated in Fig. 2, the
framework comprises an imaging stage and a spectral BTF
reconstruction stage. In the imaging stage, the RGB BTF data

is acquired by a BTF imaging system equipped with color cam-
eras. Besides, one spectral image is captured under a specific
viewing direction using a multispectral imaging system. In this
way, the total measurement time is almost identical to that of
the RGB BTF imaging system. In the reconstruction stage,
spectral BTFs are obtained by fusing the RGB and spectral
images. This is achieved by reconstructing spectral reflectance
from RGB values using nonnegative matrix factorization
(NMF). In the experiments, we evaluate the accuracy of
spectral reconstruction on both synthetic and real data, and also
illustrate the appearances of spectral BTFs under various illu-
mination conditions.

A. Background and Related Work
A classical measurement device for BRDF acquisition is the
gonioreflectometer, which mechanically moves the light source
and the detector from one position to another around the sam-
ple [1]. The work [5] developed an image-based rapid acquis-
ition system, which can efficiently capture isotropic BRDFs
by using the spherically homogenous samples of the materials.
The Mitsubishi Electric Research Laboratories (MERL) data-
base, which was collected in [5], contains the dense-sampled
isotropic BRDF data of 100 real materials, including fabrics,
painted surfaces, plastics, metals, etc. In [12], a robot-based
gonioreflectometer was used to capture spectral BRDFs with a
spectroradiometer as the measurement device. An image-based
gonio-spectrophotometer system was introduced in [13] to ac-
quire the spectral BRDF of pearlescent paints by combining
high dynamic range (HDR) images and multispectral images.

The BTF measurement device is usually equipped with a
camera and a light source. Typically, the camera and the light
source move over a hemisphere above the planar material sam-
ple [6,11,14]. The measurement process for a material can take
dozens of hours when measuring a material. To reduce mea-
surement time, the work [15] used an array of 151 commodity
digital still cameras mounted on a hemispherical gantry for
BTF collection. With the expensive hardware, the system was
capable of taking 22801 (151 × 151) images in less than an
hour. Liu et al. [16] built a dome with LEDs of different colors
to acquire spectral BTF. They learned discriminative illumina-
tion patterns from spectral BTFs to classify materials but did
not measure the entire spectral BTF data. To the best of our
knowledge, only [17] proposed a method for entire spectral
BTF acquisition. In [17], the multispectral imaging device con-
sisted of a camera and a liquid-crystal tunable filter. The spec-
tral BTFs were acquired by sequentially rotating the imaging
device and sample table. However, the system needs more than
three days to measure a material, much longer than traditional
RGB BTF imaging systems. Hence this system is not suitable
for massive BTF collection.

As mentioned, our proposed spectral BTF acquisition
framework is based on spectral reflectance reconstruction. In
the color science literature, a number of spectral reflectance
reconstruction algorithms have been proposed over the decades
[18–26]. Among these, Wiener estimation (WE) is the widely
adopted one [19–21]. The WE algorithm minimizes the mean
squared error of the reconstructed reflectance, and the real one
under certain assumptions about the signal and noise statistics
[20]. In [21], an adaptive WE algorithm was introduced to

Fig. 1. Parameters describing BTF geometry in the sample coordi-
nate system, including the viewing direction ωo ≔ �θo;ϕo�, lighting
direction ωi ≔ �θi ;ϕi�, and pixel position p ≔ �x; y�.

Fig. 2. Proposed framework for spectral BTF acquisition and
reconstruction.
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improve the accuracy of spectral reflectance reconstruction by
adaptive training sample selection and weighing.

In additional to WE, the techniques based on principal
component analysis (PCA) [27] are also widely adopted for
spectral reflectance reconstruction [22,23,28]. This is due to
the fact that the spectral reflectances of natural and man-made
surfaces are generally smooth, and thus can be represented by
the linear combinations of basis functions [29]. The basis func-
tions can be straightforwardly obtained using PCA. In [24],
nonnegative principal component analysis (NNPCA) [30] was
adopted in computing basis functions, to ensure that the recon-
structed spectral reflectances are nonnegative. It was reported
[24] that the reconstruction accuracy of the NNPCA algorithm
is better than, or close to, the PCA algorithm.

B. Our Contributions
The contributions of this work are twofold. First, a framework
is proposed for efficient spectral BTF acquisition and recon-
struction with solid theoretical and practical analysis. Second,
a new algorithm is introduced for spectral reflectance recon-
struction by using NMF. The accuracy of spectral BTF recon-
struction is validated by extensive experiments.

2. SPECTRAL BTF ACQUISITION AND
RECONSTRUCTION

A. Analysis of Imaging Models
The two imaging systems used in this work are illustrated in
Fig. 2(a). The BTF imaging system is a combination of gonior-
eflectometer structure and camera/light source arrays. It con-
sists of eight RGB cameras and seven LED light sources,
installed on two arcs with an interval step 10°. When capturing
BTFs, the camera arc keeps fixed, while the light arc and sample
table are sequentially rotated to predefined positions. The mul-
tispectral imaging system comprises a monochrome camera, a
filter wheel, and an integrating sphere [31,32]. The sample is
placed in the integrating sphere. Light rays are, by multiple
scattering reflections inside the integrating sphere, uniformly
distributed on the sample surface. The bandpass optical filters,
which cover the visible spectrum from 400 to 700 nm, are
mounted on a rotating wheel, and images are then sequentially
captured by positioning the filters in front of the camera. With
appropriate system calibration, the spectral reflectance of each
pixel is computed from the multichannel camera responses
[21,33]. The spectral accuracy of the acquired spectral image
is close to a standard spectrophotometer, which also adopts
an integrating sphere as its major optical component.

We first introduce the imaging model of the BTF system.
Suppose that the response of the camera is proportional to the
intensity of light entering the sensor, the camera response uc ,
c ∈ fR;G; Bg, can be formulated as

uc�p;ωi ;ωo� �
Z

sc�λ�f �p;ωi ;ωo; λ�lBTF�ωi ; λ� cos θidλ;

(3)

where sc�λ� denotes the following: the spectral sensitivity func-
tion of the camera at channel c; lBTF�ωi ; λ�, the spectral power
distribution of the light source from direction ωi; and θi, the
angle between ωi and surface normal. The light intensity from

all the directions are the same after system calibration, so we
have lBTF�ωi ; λ� � lBTF�λ�. In practical computation, the con-
tinuous functions are replaced by their sampled counterparts,
and the integral is written as summation. IfN ��31� uniformly
spaced samples are used over the visible spectrum, Eq. (3) can
be written in its vector and matrix notation as

u�p;ωi ;ωo� � Mf�p;ωi ;ωo� cos θi ; (4)

where M ∈ R3×N represents the spectral responsivity incor-
porating the spectral power distribution of light source and
spectral sensitivity function of camera, f�p;ωi ;ωo� ∈ RN×1

is the BTF vector, and u�p;ωi ;ωo� ∈ R3×1 is the camera
response vector.

In the multispectral imaging system, the measured spectral
reflectance r�p; λ� can be represented as

r�p; λ� �
R
Ω f �p;ωi ; eωo; λ�lMSI�ωi ; λ� cos θidωiR

Ω lMSI�ωi ; λ� cos θidωi
; (5)

where eωo ≔ �eθo; eϕo� � �0°; 0°� is the direction of the camera,
which is orthographic to the sample surface. The notation Ω
represents the hemisphere range of lighting directions, and
lMSI�ωi ; λ� denotes the spectral power distribution of light
source at direction ωi. In an integrating sphere the light inten-
sities from all directions can be considered identical, hence
Eq. (5) becomes

r�p; λ� � 1

4

Z
Ω
f �p;ωi ; eωo; λ� cos θidωi : (6)

The integrating sphere light can be regarded as a collection of
numerous point light sources distributed over the hemisphere.
Letting fω1

i ;ω2
i ;…;ωK

i g be the K sampled lighting, Eq. (6)
can be discretized as

r�p; λ� � lim
K→∞

π

2K

XK
k�1

f �p;ωk
i ; eωo; λ� cos θki : (7)

In the following we analyze the relationship between the RGB
and multispectral imaging models by simulation. Suppose
that a virtual RGB camera, which is of the same spectral sen-
sitivity of that in the BTF system, replaces the multispectral
camera in the multispectral imaging system. Denoting r�p� �
�r�p; λ1�;…; r�p; λN ��T and supposing lMSI�ωi ; λ� � lBTF�λ�,
the response of the virtual RGB camera can be represented as

uvirtualMSI �p� � Mr�p� � lim
K→∞

π

2K

XK
k�1

Mf�p;ωk
i ; eωo� cos θki :

(8)

Combining Eqs. (4) and Eq. (8) yields

uvirtualMSI �p� � lim
K→∞

π

2K

XK
k�1

u�p;ωk
i ; eωo� ≈

π

2
ūK �p�; (9)

where

ūK �p� �
1

K

XK
k�1

u�p;ωk
i ; eωo� (10)

is the mean image computed from the BTF images captured by
the orthogonal (top view) camera under K lighting directions.
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We note that as the number of lighting directions, K , is
limited in the BTF imaging system, the equality in expression
(9) does not strictly hold. Nevertheless, our simulation on the
MERL database [5] reveals that the approximation holds for
real materials without strong specular reflections. As mentioned
in Section 1, the MERL database contains densely sampled
BRDF data. To validate our hypothesis on BTF images, we
rendered two typical 3D surfaces using BRDF data and simu-
lated shadow by ray tracing [34]. Other light-surface interac-
tion phenomena such as interreflection are not considered as
they are not quite influential to the analysis. Figure 3(a) shows
6 MERL BRDF materials used in our simulation. It is observed

that materials red-plastic and delrin have some specular reflec-
tion, and the other four materials are mainly of diffuse reflec-
tion. For visualization purpose, Fig. 3(b) illustrates the two
surfaces (Sandpaper and Cylinder) rendered using the material
yellow-paint under specific lighting and viewing directions.

For quantitative analysis, Table 1 lists the average responses
and relative errors of the mean BTF images of the two surfaces
rendered with the six BRDF materials. The number of the
lighting direction, K , is determined by the rotation intervals of
light arc Δϕi. In the simulation we set the interval Δϕi � 10°,
20°, or 30°. It is seen that the relative errors of mean image
approximation are less than 1.5% in all cases. This finding mo-
tivates us to reconstruct spectral BTFs using the computed
mean BTF image ū�p� and the captured spectral image r�p�.
B. Spectral BTF Reconstruction
The spectral reflectance reconstruction problem can be formu-
lated to find a transform that converts the camera responses to
spectral reflectance. In this paper, the RGB values of training
color samples are from the mean RGB BTF image, and the
spectral reflectance counterparts are from the captured spectral
image.

In the following, we introduce our new spectral reconstruc-
tion algorithm, which is based on NMF [35]. NMF factorizes
a nonnegative matrix, whose entries are either positive or zero,
into two low-rank nonnegative matrices. The use of NMF is
reasonable, because the spectral reflectances of object surfaces
are physically nonnegative.

To simplify notations, the variable p (pixel position) will be
omitted hereafter without causing confusion. Owing to the
smooth property of spectral reflectance, r is represented by the
linear combination of J�< N � basis functions [29,28],

r � Ba; (11)

where B ∈ RN×J is the matrix of basis functions, and a ∈ RJ×1

is the corresponding coefficient vector. In this paper, we set
J � 3 as only 3 channels are available in the mean BTF image.
Then the imaging model can be written as

u � Mr � MBa � Ga; (12)

where we denote G ≔ MB. Note that here we have made the
constant scale π∕2 in expression (9) be subsumed into the spec-
tral responsivity matrix M.

yellow-paint 
 

pink-fabric green-latex

blue-rubber
 

red-plastic delrin 

(a) 

Sandpaper Cylinder 
(b) 

Fig. 3. Simulated BTF images of the 3D Sandpaper and Cylinder
surfaces. (a) Six MERL BRDF materials. (b) Rendered surfaces using
the MERL material yellow-paint.

Table 1. Average Responses (Relative Error) of the Mean BTF Images, with The BTF Images Simulated from the
Sandpaper and Cylinder Surfaces, and Rendered by Six MERL BRDF Materialsa

Yellow-Paint Pink-Fabric Green-Latex Blue-Rubber Red-Plastic Delrin

Sandpaper
Densely sampled 50.01 75.68 32.18 29.79 37.57 90.06
Δϕi � 10°�K � 245� 50.21 (0.40%) 75.51 (0.23%) 31.91 (0.85%) 29.77 (0.09%) 37.48 (0.24%) 89.80 (0.29%)
Δϕi � 20°�K � 119� 50.21 (0.40%) 75.51 (0.23%) 31.91 (0.85%) 29.77 (0.09%) 37.48 (0.24%) 89.80 (0.29%)
Δϕi � 30°�K � 77� 50.22 (0.43%) 75.51 (0.23%) 31.92 (0.83%) 29.78 (0.05%) 37.48 (0.24%) 89.80 (0.29%)
Cylinder
Densely sampled 50.82 76.20 33.94 30.83 39.22 95.44
Δϕi � 10°�K � 245� 50.71 (0.23%) 75.93 (0.35%) 33.75 (0.57%) 30.54 (0.93%) 38.94 (0.71%) 94.05 (1.46%)
Δϕi � 20°�K � 119� 50.71 (0.23%) 75.93 (0.35%) 33.75 (0.57%) 30.54 (0.93%) 38.94 (0.71%) 94.05 (1.46%)
Δϕi � 30°�K � 77� 50.71 (0.23%) 75.97 (0.30%) 33.76 (0.54%) 30.55 (0.90%) 38.96 (0.67%) 94.01 (1.49%)

aThe number of lighting directions, K , is determined by rotation interval Δϕi .
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Denote P as the number of pixels in the mean BTF (or
spectral) images. Further denote R ∈ RN×P as the reflectance
matrix that stacks all the reflectances in the spectral image, and
U ∈ R3×P the response matrix that stacks all the RGB values in
the mean BTF image. According to Eqs. (11) and (12), we have
R � BA and U � GA, where A ∈ RJ×P is the coefficient
matrix. Our aim is to find matrices B, G, and A that minimize
the two representations. Since spectral reflectance and RGB
values cannot be negative, it is natural to impose a nonnegative
constraint on the basis function matrix and coefficient matrix.
Hence, the objective function can be formulated as

fB;G;Ag � arg min
B;G;A

∥R − BA∥2F � γ∥U −GA∥2F ;

s:t: B ≥ 0;G ≥ 0;A ≥ 0; (13)

where the subscript F denotes the Frobenius norm, and the
parameter γ balances the two error terms. Denoting X �
�R; ffiffiffi

γ
p

U�T and D � �B; ffiffiffi
γ

p
G�T, Eq. (13) can be transformed

to the standard NMF formulation,

fD;Ag � arg min
D;A

∥X − DA∥2F; s:t: D ≥ 0;A ≥ 0; (14)

which can be solved using the NMF solver in [36]. In this
paper, we simply set γ � 1.

After obtaining the matrices B and G, the spectral reflec-
tance can be computed from RGB values. For a specific RGB
response us, its corresponding coefficient is computed by

â � arg min
a
∥us −Ga∥22; s:t: a ≥ 0; (15)

and the spectral reflectance is reconstructed as

r̂s � Bâ: (16)

3. EXPERIMENTS

In the experiments, we evaluate the proposed spectral recon-
struction algorithm on both synthetic and real data. The syn-
thetic data are generated based on the Bonn University spectral
BTF dataset [37] that was captured using the method presented
in [17]. The real RGB BTF images and the spectral image were
captured using the imaging systems shown in Fig. 2(a). The
spectral reconstruction accuracy of the proposed algorithm is

compared to three baseline algorithms, i.e., WE [19,20], PCA
algorithm [23,25], and NNPCA algorithm [24].

A. Synthetic Data Results
The spectral BTFs of two materials, namely, Red-fabric and
Lego-brick, are used in the synthetic data experiment. Each
material has 6561 spectral BTF images, captured under 81
viewing directions and 81 lighting directions. The pixel spectra
are smoothed to reduce the unrealistic spectral fluctuations
caused by limited imaging condition [37]. The corresponding
RGB BTF images are generated from the spectral ones accord-
ing to Eq. (4), by using the spectral responsivity identical to our
BTF imaging system. Gaussian noise with zero mean and stan-
dard deviation 0.02 (in the range [0,1]) is added to simulate the
noise level of our real BTF imaging process.

The accuracy of spectral reconstruction is evaluated in terms
of spectral root-mean-squares (rms) error and colorimetric error.
The latter is computed using the CIEDE2000 color difference
(ΔE00) formula [38] under CIE standard illuminants D65, F2,
and A. Tables 2 and 3, respectively, show the colorimetric and
spectral errors of the four algorithms. The viewing direction
�θi ;ϕi� � �0°; 0°� that corresponds to the top-view camera is
for training, and the other three directions are for testing. It is
seen that the reconstruction errors of the proposed algorithm are
lower than those of the competitors on both materials.

Figure 4 shows the reconstruction results of the material
Red-fabric under three different combinations of viewing and
lighting directions. It is observed that the spectral reflectance
reconstructed by the proposed algorithm is the closest to
ground truths, when compared to the other three algorithms.

Figure 5 further shows the reconstructed reflectances of the
specified positions on the Lego-brick surface. This surface has a
large height variation and contains distinct colors. It is observed
that for both diffuse pixel A and specular pixel B, the spectral
reflectances reconstructed by the proposed method are very
close to the ground truths. For pixel C , which is not invisible
to the top camera due to surface height, the spectral reflectance
reconstructed by the proposed algorithm is still satisfactory.

B. Real Data Results
Figure 6 shows the example RGB BTF images of 19 materials
captured by our BTF and multispectral imaging systems. These

Table 2. Colorimetric Errors Produced by Spectral Reflectance Reconstruction Algorithmsa

ΔE00 (D65) ΔE00 (F2) ΔE00 (A)

WE PCA NNPCA Proposed WE PCA NNPCA Proposed WE PCA NNPCA Proposed

Red-fabric
(0°, 0°) 1.16 1.03 1.06 0.65 1.12 0.90 0.91 0.69 1.21 1.06 1.07 0.62
(15°, 0°) 1.67 1.11 1.16 0.92 1.68 1.11 1.12 0.89 1.64 1.15 1.17 0.84
(45°, 120°) 1.93 1.26 1.31 1.03 1.97 1.27 1.29 0.98 1.79 1.23 1.26 0.90
(75°, 240°) 1.82 1.27 1.32 1.07 2.06 1.33 1.34 1.13 1.80 1.24 1.25 0.91
Lego-brick
(0°, 0°) 1.09 1.02 1.02 0.94 1.15 1.12 1.12 0.99 1.00 1.12 1.12 0.97
(15°, 0°) 1.54 1.35 1.35 1.23 1.56 1.41 1.41 1.20 1.47 1.43 1.43 1.17
(45°, 120°) 1.49 1.33 1.33 1.21 1.50 1.39 1.39 1.19 1.41 1.41 1.41 1.16
(75°, 240°) 1.49 1.34 1.34 1.23 1.48 1.40 1.40 1.20 1.35 1.40 1.40 1.16

aThe viewing direction �θo;ϕo� � �0°; 0°� is for training, and the other three directions are for testing.
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materials belong to 5 categories (knitted fabric, yarn-dyed
fabric, wallpaper, woven, and wood) and are of various color
patterns. In the RGB BTF imaging system, the rotation inter-
vals of the light arc and sample table are set as Δϕi � 30°. As
only the top-view spectral BTFs are available (captured by the
multispectral imaging system), in this experiment half pixels are
randomly selected for training and the rest are for testing. The
colorimetric and spectral errors of the four algorithms are
shown in Table 4. It is observed that the mean and maximum

errors of the proposed algorithm are much lower than those of
the three competitors.

Figure 7 shows the reconstructed spectral reflectances of the
highlighted pixels in two BTF images. Note that the reflectan-
ces produced by the PCA algorithm are quite similar to those
by the NNPCA algorithm, and hence are not shown for clear

Fig. 5. Spectral reflectances reconstructed by different algorithms.
Pixels A and B are of diffuse and specular reflections, respectively.
Pixel C is not visible to the top camera due to surface height variation.
(a) Images of the Lego-brick surface. (b) Reconstructed spectral reflec-
tances of the specified pixels.

Table 3. Spectral RMS Errors Produced by the Spectral
Reflectance Reconstruction Algorithmsa

Spectral RMS

WE PCA NNPCA Proposed

Red-fabric
(0°, 0°) 0.0025 0.0023 0.0024 0.0018
(15°, 0°) 0.0036 0.0042 0.0045 0.0032
(45°, 120°) 0.0042 0.0050 0.0054 0.0038
(75°, 240°) 0.0070 0.0074 0.0079 0.0065
Lego-brick
(0°, 0°) 0.0059 0.0062 0.0062 0.0054
(15°, 0°) 0.0060 0.0059 0.0059 0.0056
(45°, 120°) 0.0069 0.0066 0.0066 0.0062
(75°, 240°) 0.0086 0.0082 0.0082 0.0079

aThe viewing direction �θi ;ϕi� � �0°; 0°� is for training, and the other three
directions are for testing.

Fig. 4. Spectral reflectances reconstructed by different algorithms.
(a) Images of the Red-fabricmaterial under different lighting and view-
ing directions. (b) Reconstructed spectral reflectances of the specified
pixels.

#1 #2 #3 #4 #5 
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Fig. 6. Example images of the 19 real materials used in the experi-
ment. Row 1: knitted fabric. Row 2: yarn-dyed fabric. Row 3: woven.
Row 4: wood.
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visualization purpose. It is seen that the reflectance curves
reconstructed by the proposed method are closer to ground
truths, when compared to those by the WE and NNPCA
algorithms.

C. Three-Dimensional Model Rendering
A conventional application of the spectral BTF is in rendering
three-dimensional (3D) models under different illumination
environments. In this spectral rendering procedure, the colori-
metric CIEXYZ BTFs are computed from the reconstructed
spectral BTFs and the spectral power distribution (SPD) of the
CIE standard illuminants. The CIEXYZ BTFs are then con-
verted to sRGB color space [39] for display. Figure 8 shows
the 3D models (Sphere, Bunny, Cloth) rendered by three ma-
terials (knitted fabric #3, wood #1, and yarn-dyed fabric #4).
The material wood #1 contains a few specular reflections, and
the other two materials are of diffuse reflection. In Fig. 8, the
first row shows the rendered results of the raw captured RGB
BTFs, and the other rows demonstrate the rendered results of
the reconstructed spectral BTF under three CIE standard illumi-
nants. The visual appearances of the rendered 3D models can
be very different under these illuminants. Overall, the rendered

scenes appear quite natural for both diffuse and specular
materials by using the spectral BTFs.

Colorimetric rendering can be a possible alternative to spec-
tral rendering. In colorimetric rendering, the CIEXYZ BTFs
under each illuminant are directly estimated from the acquired
RGB BTFs, without using spectral reflectances. The transform
between the acquired RGB values and CIEXYZ values can be
modeled by two-order polynomial fitting [40]. However, due to
the fitting error, the scenes produced by spectral rendering and
colorimetric rendering are different. This is validated in Fig. 9.
As shown, the color difference between the rendered scenes are
visually obvious. Hence, spectral rendering should be used to
achieve high color fidelity.

D. Efficiency
Our BTF imaging system acquires 7392 RGB images
(96 views × 77 lights) for each material when setting the ro-
tation intervals of the light arc and sample table as Δϕi � 30°.
As shown in Table 5, the traditional full measurement tech-
nique needs 61.6 hours to capture all the 7392 multispectral
images. In contrast, the proposed method costs 5.25 hours in
capturing the RGB BTFs and 0.83 hours in reconstructing the

Table 4. Colorimetric and Spectral Errors (Mean and Maximum) Produced by Spectral Reflectance Reconstruction
Algorithms on 19 Real Materials

ΔE00 (D65) ΔE00 (F2) ΔE00 (A) Spectral RMS

Mean Max. Mean Max. Mean Max. Mean Max.

WE 1.33 3.15 1.29 2.80 1.33 4.02 0.017 0.049
PCA 3.10 5.89 3.39 7.82 2.95 5.62 0.071 0.255
NNPCA 2.94 5.62 2.92 7.84 1.81 3.26 0.067 0.209
Proposed 0.95 1.82 0.96 1.81 0.95 1.81 0.013 0.032
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Fig. 7. Spectral reflectances reconstructed by different algorithms. (a) Images of yarn-dyed fabric #1 and woven #5 materials. (b) Reconstructed
spectral reflectances of the specified pixels.

10406 Vol. 55, No. 36 / December 20 2016 / Applied Optics Research Article



spectral BTFs. In total, the proposed method obtains 9 ×
efficiency improvement compared to the full measurement
technique.

The efficiency can be further improved in real applications.
For example, in scene rendering it is not necessary to transform
the acquired RGB BTFs to the spectral ones in advance.
Actually, one can first render the 3D model with the raw RGB

BTFs and then convert the rendered RGB scene to the spectral
scene. In this way, much computational time and memory
space can be saved.

4. CONCLUSIONS

This paper proposes a framework for efficient BTF acquisition
and reconstruction. The framework acquires multiple RGB
BTF images as usual and one additional spectral image. In this
manner, the efficiency of data acquisition is totally determined
by the RGB BTF imaging system. By exploring the relationship
between the mean BTF images and the spectral image, spectral
BTFs are reconstructed via image fusion. The spectral reflec-
tance reconstruction is based on the linear representation of
reflectance and NMF. It is verified that the proposed NMF-
based algorithm outperforms the traditional ones on both syn-
thetic and real data. The proposed framework is of practical
application in reproducing visual appearances under different
illumination conditions.

In this work an integrating sphere is used to produce uni-
form lighting in the multispectral imaging system. With this
geometry, the spectral accuracy of the system is close to stan-
dard spectrophotometers. A limitation is that the proposed
method will be not applicable to materials with strong specular
highlight due to the geometrical inconsistency between the
BTF and multispectral imaging systems. The exploration of
both geometry compatibility and high spectral accuracy will
be our future work on spectral BTF acqusition.

Funding. National Natural Science Foundation of China
(NSFC) (61271339, 61371160); Hong Kong Research
Institute of Textiles and Apparel (ITP/048/13TP).
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